Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed

Models, code, and papers for "3d Object Reconstruction From A Single Image"

CoReNet: Coherent 3D scene reconstruction from a single RGB image

Apr 27, 2020
Stefan Popov, Pablo Bauszat, Vittorio Ferrari

Advances in deep learning techniques have allowed recent work to reconstruct the shape of a single object given only one RBG image as input. Building on common encoder-decoder architectures for this task, we propose three extensions: (1) ray-traced skip connections that propagate local 2D information to the output 3D volume in a physically correct manner; (2) a hybrid 3D volume representation that enables building translation equivariant models, while at the same time encoding fine object details without an excessive memory footprint; (3) a reconstruction loss tailored to capture overall object geometry. Furthermore, we adapt our model to address the harder task of reconstructing multiple objects from a single image. We reconstruct all objects jointly in one pass, producing a coherent reconstruction, where all objects live in a single consistent 3D coordinate frame relative to the camera and they do not intersect in 3D space. We also handle occlusions and resolve them by hallucinating the missing object parts in the 3D volume. We validate the impact of our contributions experimentally both on synthetic data from ShapeNet as well as real images from Pix3D. Our method outperforms the state-of-the-art single-object methods on both datasets. Finally, we evaluate performance quantitatively on multiple object reconstruction with synthetic scenes assembled from ShapeNet objects.

  Access Paper or Ask Questions

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction

Apr 02, 2016
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, Silvio Savarese

Inspired by the recent success of methods that employ shape priors to achieve robust 3D reconstructions, we propose a novel recurrent neural network architecture that we call the 3D Recurrent Reconstruction Neural Network (3D-R2N2). The network learns a mapping from images of objects to their underlying 3D shapes from a large collection of synthetic data. Our network takes in one or more images of an object instance from arbitrary viewpoints and outputs a reconstruction of the object in the form of a 3D occupancy grid. Unlike most of the previous works, our network does not require any image annotations or object class labels for training or testing. Our extensive experimental analysis shows that our reconstruction framework i) outperforms the state-of-the-art methods for single view reconstruction, and ii) enables the 3D reconstruction of objects in situations when traditional SFM/SLAM methods fail (because of lack of texture and/or wide baseline).

* Appendix can be found at 

  Access Paper or Ask Questions

Pix2Vox++: Multi-scale Context-aware 3D Object Reconstruction from Single and Multiple Images

Jul 07, 2020
Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen Zhou, Wenxiu Sun

Recovering the 3D shape of an object from single or multiple images with deep neural networks has been attracting increasing attention in the past few years. Mainstream works (e.g. 3D-R2N2) use recurrent neural networks (RNNs) to sequentially fuse feature maps of input images. However, RNN-based approaches are unable to produce consistent reconstruction results when given the same input images with different orders. Moreover, RNNs may forget important features from early input images due to long-term memory loss. To address these issues, we propose a novel framework for single-view and multi-view 3D object reconstruction, named Pix2Vox++. By using a well-designed encoder-decoder, it generates a coarse 3D volume from each input image. A multi-scale context-aware fusion module is then introduced to adaptively select high-quality reconstructions for different parts from all coarse 3D volumes to obtain a fused 3D volume. To further correct the wrongly recovered parts in the fused 3D volume, a refiner is adopted to generate the final output. Experimental results on the ShapeNet, Pix3D, and Things3D benchmarks show that Pix2Vox++ performs favorably against state-of-the-art methods in terms of both accuracy and efficiency.

* International Journal of Computer Vision (IJCV). arXiv admin note: text overlap with arXiv:1901.11153 

  Access Paper or Ask Questions

Learning to Detect 3D Reflection Symmetry for Single-View Reconstruction

Jun 17, 2020
Yichao Zhou, Shichen Liu, Yi Ma

3D reconstruction from a single RGB image is a challenging problem in computer vision. Previous methods are usually solely data-driven, which lead to inaccurate 3D shape recovery and limited generalization capability. In this work, we focus on object-level 3D reconstruction and present a geometry-based end-to-end deep learning framework that first detects the mirror plane of reflection symmetry that commonly exists in man-made objects and then predicts depth maps by finding the intra-image pixel-wise correspondence of the symmetry. Our method fully utilizes the geometric cues from symmetry during the test time by building plane-sweep cost volumes, a powerful tool that has been used in multi-view stereopsis. To our knowledge, this is the first work that uses the concept of cost volumes in the setting of single-image 3D reconstruction. We conduct extensive experiments on the ShapeNet dataset and find that our reconstruction method significantly outperforms the previous state-of-the-art single-view 3D reconstruction networks in term of the accuracy of camera poses and depth maps, without requiring objects being completely symmetric. Code is available at

  Access Paper or Ask Questions

Deep Single-View 3D Object Reconstruction with Visual Hull Embedding

Sep 10, 2018
Hanqing Wang, Jiaolong Yang, Wei Liang, Xin Tong

3D object reconstruction is a fundamental task of many robotics and AI problems. With the aid of deep convolutional neural networks (CNNs), 3D object reconstruction has witnessed a significant progress in recent years. However, possibly due to the prohibitively high dimension of the 3D object space, the results from deep CNNs are often prone to missing some shape details. In this paper, we present an approach which aims to preserve more shape details and improve the reconstruction quality. The key idea of our method is to leverage object mask and pose estimation from CNNs to assist the 3D shape learning by constructing a probabilistic single-view visual hull inside of the network. Our method works by first predicting a coarse shape as well as the object pose and silhouette using CNNs, followed by a novel 3D refinement CNN which refines the coarse shapes using the constructed probabilistic visual hulls. Experiment on both synthetic data and real images show that embedding a single-view visual hull for shape refinement can significantly improve the reconstruction quality by recovering more shapes details and improving shape consistency with the input image.

* 11 pages 

  Access Paper or Ask Questions

Im2Avatar: Colorful 3D Reconstruction from a Single Image

Apr 17, 2018
Yongbin Sun, Ziwei Liu, Yue Wang, Sanjay E. Sarma

Existing works on single-image 3D reconstruction mainly focus on shape recovery. In this work, we study a new problem, that is, simultaneously recovering 3D shape and surface color from a single image, namely "colorful 3D reconstruction". This problem is both challenging and intriguing because the ability to infer textured 3D model from a single image is at the core of visual understanding. Here, we propose an end-to-end trainable framework, Colorful Voxel Network (CVN), to tackle this problem. Conditioned on a single 2D input, CVN learns to decompose shape and surface color information of a 3D object into a 3D shape branch and a surface color branch, respectively. Specifically, for the shape recovery, we generate a shape volume with the state of its voxels indicating occupancy. For the surface color recovery, we combine the strength of appearance hallucination and geometric projection by concurrently learning a regressed color volume and a 2D-to-3D flow volume, which are then fused into a blended color volume. The final textured 3D model is obtained by sampling color from the blended color volume at the positions of occupied voxels in the shape volume. To handle the severe sparse volume representations, a novel loss function, Mean Squared False Cross-Entropy Loss (MSFCEL), is designed. Extensive experiments demonstrate that our approach achieves significant improvement over baselines, and shows great generalization across diverse object categories and arbitrary viewpoints.

* 10 pages 

  Access Paper or Ask Questions

SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static Images

Oct 20, 2020
Chen-Hsuan Lin, Chaoyang Wang, Simon Lucey

Dense 3D object reconstruction from a single image has recently witnessed remarkable advances, but supervising neural networks with ground-truth 3D shapes is impractical due to the laborious process of creating paired image-shape datasets. Recent efforts have turned to learning 3D reconstruction without 3D supervision from RGB images with annotated 2D silhouettes, dramatically reducing the cost and effort of annotation. These techniques, however, remain impractical as they still require multi-view annotations of the same object instance during training. As a result, most experimental efforts to date have been limited to synthetic datasets. In this paper, we address this issue and propose SDF-SRN, an approach that requires only a single view of objects at training time, offering greater utility for real-world scenarios. SDF-SRN learns implicit 3D shape representations to handle arbitrary shape topologies that may exist in the datasets. To this end, we derive a novel differentiable rendering formulation for learning signed distance functions (SDF) from 2D silhouettes. Our method outperforms the state of the art under challenging single-view supervision settings on both synthetic and real-world datasets.

* Accepted to NeurIPS 2020. Project page & code: 

  Access Paper or Ask Questions

Learning Pose-invariant 3D Object Reconstruction from Single-view Images

Apr 03, 2020
Bo Peng, Wei Wang, Jing Dong, Tieniu Tan

Learning to reconstruct 3D shapes using 2D images is an active research topic, with benefits of not requiring expensive 3D data. However, most work in this direction requires multi-view images for each object instance as training supervision, which oftentimes does not apply in practice. In this paper, we relax the common multi-view assumption and explore a more challenging yet more realistic setup of learning 3D shape from only single-view images. The major difficulty lies in insufficient constraints that can be provided by single view images, which leads to the problem of pose entanglement in learned shape space. As a result, reconstructed shapes vary along input pose and have poor accuracy. We address this problem by taking a novel domain adaptation perspective, and propose an effective adversarial domain confusion method to learn pose-disentangled compact shape space. Experiments on single-view reconstruction show effectiveness in solving pose entanglement, and the proposed method achieves state-of-the-art reconstruction accuracy with high efficiency.

* under review, code available at 

  Access Paper or Ask Questions

Lifting Object Detection Datasets into 3D

Jul 31, 2016
Joao Carreira, Sara Vicente, Lourdes Agapito, Jorge Batista

While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image.

  Access Paper or Ask Questions

STD-Net: Structure-preserving and Topology-adaptive Deformation Network for 3D Reconstruction from a Single Image

Mar 07, 2020
Aihua Mao, Canglan Dai, Lin Gao, Ying He, Yong-jin Liu

3D reconstruction from a single view image is a long-standing prob-lem in computer vision. Various methods based on different shape representations(such as point cloud or volumetric representations) have been proposed. However,the 3D shape reconstruction with fine details and complex structures are still chal-lenging and have not yet be solved. Thanks to the recent advance of the deepshape representations, it becomes promising to learn the structure and detail rep-resentation using deep neural networks. In this paper, we propose a novel methodcalled STD-Net to reconstruct the 3D models utilizing the mesh representationthat is well suitable for characterizing complex structure and geometry details.To reconstruct complex 3D mesh models with fine details, our method consists of(1) an auto-encoder network for recovering the structure of an object with bound-ing box representation from a single image, (2) a topology-adaptive graph CNNfor updating vertex position for meshes of complex topology, and (3) an unifiedmesh deformation block that deforms the structural boxes into structure-awaremeshed models. Experimental results on the images from ShapeNet show that ourproposed STD-Net has better performance than other state-of-the-art methods onreconstructing 3D objects with complex structures and fine geometric details.

* 14 pages,5 figures 

  Access Paper or Ask Questions

Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision

Aug 13, 2017
Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, Honglak Lee

Understanding the 3D world is a fundamental problem in computer vision. However, learning a good representation of 3D objects is still an open problem due to the high dimensionality of the data and many factors of variation involved. In this work, we investigate the task of single-view 3D object reconstruction from a learning agent's perspective. We formulate the learning process as an interaction between 3D and 2D representations and propose an encoder-decoder network with a novel projection loss defined by the perspective transformation. More importantly, the projection loss enables the unsupervised learning using 2D observation without explicit 3D supervision. We demonstrate the ability of the model in generating 3D volume from a single 2D image with three sets of experiments: (1) learning from single-class objects; (2) learning from multi-class objects and (3) testing on novel object classes. Results show superior performance and better generalization ability for 3D object reconstruction when the projection loss is involved.

* published at NIPS 2016 

  Access Paper or Ask Questions

3D Reconstruction of Simple Objects from A Single View Silhouette Image

Jan 17, 2017
Xinhan Di, Pengqian Yu

While recent deep neural networks have achieved promising results for 3D reconstruction from a single-view image, these rely on the availability of RGB textures in images and extra information as supervision. In this work, we propose novel stacked hierarchical networks and an end to end training strategy to tackle a more challenging task for the first time, 3D reconstruction from a single-view 2D silhouette image. We demonstrate that our model is able to conduct 3D reconstruction from a single-view silhouette image both qualitatively and quantitatively. Evaluation is performed using Shapenet for the single-view reconstruction and results are presented in comparison with a single network, to highlight the improvements obtained with the proposed stacked networks and the end to end training strategy. Furthermore, 3D re- construction in forms of IoU is compared with the state of art 3D reconstruction from a single-view RGB image, and the proposed model achieves higher IoU than the state of art of reconstruction from a single view RGB image.

* Submitted Nov 2016 

  Access Paper or Ask Questions

Photo-Geometric Autoencoding to Learn 3D Objects from Unlabelled Images

Jun 04, 2019
Shangzhe Wu, Christian Rupprecht, Andrea Vedaldi

We show that generative models can be used to capture visual geometry constraints statistically. We use this fact to infer the 3D shape of object categories from raw single-view images. Differently from prior work, we use no external supervision, nor do we use multiple views or videos of the objects. We achieve this by a simple reconstruction task, exploiting the symmetry of the objects' shape and albedo. Specifically, given a single image of the object seen from an arbitrary viewpoint, our model predicts a symmetric canonical view, the corresponding 3D shape and a viewpoint transformation, and trains with the goal of reconstructing the input view, resembling an auto-encoder. Our experiments show that this method can recover the 3D shape of human faces, cat faces, and cars from single view images, without supervision. On benchmarks, we demonstrate superior accuracy compared to other methods that use supervision at the level of 2D image correspondences.

* Appendix included, 17 pages. Project page: 

  Access Paper or Ask Questions

Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning

Nov 26, 2017
Lingjing Wang, Yi Fang

Recent advancements in deep learning opened new opportunities for learning a high-quality 3D model from a single 2D image given sufficient training on large-scale data sets. However, the significant imbalance between available amount of images and 3D models, and the limited availability of labeled 2D image data (i.e. manually annotated pairs between images and their corresponding 3D models), severely impacts the training of most supervised deep learning methods in practice. In this paper, driven by a novel design of adversarial networks, we have developed an unsupervised learning paradigm to reconstruct 3D models from a single 2D image, which is free of manually annotated pairwise input image and its associated 3D model. Particularly, the paradigm begins with training an adaption network via autoencoder with adversarial loss, which embeds unpaired 2D synthesized image domain with real world image domain to a shared latent vector space. Then, we jointly train a 3D deconvolutional network to transform the latent vector space to the 3D object space together with the embedding process. Our experiments verify our network's robust and superior performance in handling 3D volumetric object generation from a single 2D image.

  Access Paper or Ask Questions

Pix2Vox: Context-aware 3D Reconstruction from Single and Multi-view Images

Jan 31, 2019
Haozhe Xie, Hongxun Yao, Xiaoshuai Sun, Shangchen Zhou, Shengping Zhang, Xiaojun Tong

Recovering the 3D representation of an object from single-view or multi-view RGB images by deep neural networks has attracted increasing attention in the past few years. Several mainstream works (e.g., 3D-R2N2) use recurrent neural networks (RNNs) to fuse multiple feature maps extracted from input images sequentially. However, when given the same set of input images with different orders, RNN-based approaches are unable to produce consistent reconstruction results. Moreover, due to long-term memory loss, RNNs cannot fully exploit input images to refine reconstruction results. To solve these problems, we propose a novel framework for single-view and multi-view 3D reconstruction, named Pix2Vox. By using a well-designed encoder-decoder, it generates a coarse 3D volume from each input image. Then, a context-aware fusion module is introduced to adaptively select high-quality reconstructions for each part (e.g., table legs) from different coarse 3D volumes to obtain a fused 3D volume. Finally, a refiner further refines the fused 3D volume to generate the final output. Experimental results on the ShapeNet and Pascal 3D+ benchmarks indicate that the proposed Pix2Vox outperforms state-of-the-arts by a large margin. Furthermore, the proposed method is 24 times faster than 3D-R2N2 in terms of backward inference time. The experiments on ShapeNet unseen 3D categories have shown the superior generalization abilities of our method.

  Access Paper or Ask Questions

Rethinking Reprojection: Closing the Loop for Pose-aware ShapeReconstruction from a Single Image

Jul 26, 2017
Rui Zhu, Hamed Kiani Galoogahi, Chaoyang Wang, Simon Lucey

An emerging problem in computer vision is the reconstruction of 3D shape and pose of an object from a single image. Hitherto, the problem has been addressed through the application of canonical deep learning methods to regress from the image directly to the 3D shape and pose labels. These approaches, however, are problematic from two perspectives. First, they are minimizing the error between 3D shapes and pose labels - with little thought about the nature of this label error when reprojecting the shape back onto the image. Second, they rely on the onerous and ill-posed task of hand labeling natural images with respect to 3D shape and pose. In this paper we define the new task of pose-aware shape reconstruction from a single image, and we advocate that cheaper 2D annotations of objects silhouettes in natural images can be utilized. We design architectures of pose-aware shape reconstruction which re-project the predicted shape back on to the image using the predicted pose. Our evaluation on several object categories demonstrates the superiority of our method for predicting pose-aware 3D shapes from natural images.

* First sub 

  Access Paper or Ask Questions

PeelNet: Textured 3D reconstruction of human body using single view RGB image

Feb 16, 2020
Sai Sagar Jinka, Rohan Chacko, Avinash Sharma, P. J. Narayanan

Reconstructing human shape and pose from a single image is a challenging problem due to issues like severe self-occlusions, clothing variations, and changes in lighting to name a few. Many applications in the entertainment industry, e-commerce, health-care (physiotherapy), and mobile-based AR/VR platforms can benefit from recovering the 3D human shape, pose, and texture. In this paper, we present PeelNet, an end-to-end generative adversarial framework to tackle the problem of textured 3D reconstruction of the human body from a single RGB image. Motivated by ray tracing for generating realistic images of a 3D scene, we tackle this problem by representing the human body as a set of peeled depth and RGB maps which are obtained by extending rays beyond the first intersection with the 3D object. This formulation allows us to handle self-occlusions efficiently. Current parametric model-based approaches fail to model loose clothing and surface-level details and are proposed for the underlying naked human body. Majority of non-parametric approaches are either computationally expensive or provide unsatisfactory results. We present a simple non-parametric solution where the peeled maps are generated from a single RGB image as input. Our proposed peeled depth maps are back-projected to 3D volume to obtain a complete 3D shape. The corresponding RGB maps provide vertex-level texture details. We compare our method against current state-of-the-art methods in 3D reconstruction and demonstrate the effectiveness of our method on BUFF and MonoPerfCap datasets.

  Access Paper or Ask Questions

Learning single-image 3D reconstruction by generative modelling of shape, pose and shading

Jan 19, 2019
Paul Henderson, Vittorio Ferrari

We present a unified framework tackling two problems: class-specific 3D reconstruction from a single image, and generation of new 3D shape samples. These tasks have received considerable attention recently; however, most existing approaches rely on 3D supervision, annotation of 2D images with keypoints or poses, and/or training with multiple views of each object instance. Our framework is very general: it can be trained in similar settings to existing approaches, while also supporting weaker supervision. Importantly, it can be trained purely from 2D images, without pose annotations, and with only a single view per instance. We employ meshes as an output representation, instead of voxels used in most prior work. This allows us to reason over lighting parameters and exploit shading information during training, which previous 2D-supervised methods cannot. Thus, our method can learn to generate and reconstruct concave object classes. We evaluate our approach in various settings, showing that: (i) it learns to disentangle shape from pose and lighting; (ii) using shading in the loss improves performance compared to just silhouettes; (iii) when using a standard single white light, our model outperforms state-of-the-art 2D-supervised methods, both with and without pose supervision, thanks to exploiting shading cues; (iv) performance improves further when using multiple coloured lights, even approaching that of state-of-the-art 3D-supervised methods; (v) shapes produced by our model capture smooth surfaces and fine details better than voxel-based approaches; and (vi) our approach supports concave classes such as bathtubs and sofas, which methods based on silhouettes cannot learn.

* Journal extension of arXiv:1807.09259. Differentiable renderer available at 

  Access Paper or Ask Questions

Meta3D: Single-View 3D Object Reconstruction from Shape Priors in Memory

Mar 14, 2020
Shuo Yang, Min Xu, Hongxun Yao

3D shape reconstruction from a single-view RGB image is an ill-posed problem due to the invisible parts of the object to be reconstructed. Most of the existing methods rely on large-scale data to obtain shape priors through tuning parameters of reconstruction models. These methods might not be able to deal with the cases with heavy object occlusions and noisy background since prior information can not be retained completely or applied efficiently. In this paper, we are the first to develop a memory-based meta-learning framework for single-view 3D reconstruction. A write controller is designed to extract shape-discriminative features from images and store image features and their corresponding volumes into external memory. A read controller is proposed to sequentially encode shape priors related to the input image and predict a shape-specific refiner. Experimental results demonstrate that our Meta3D outperforms state-of-the-art methods with a large margin through retaining shape priors explicitly, especially for the extremely difficult cases.

  Access Paper or Ask Questions