Abstract:Early cavemen relied on gestures, vocalizations, and simple signals to coordinate, plan, avoid predators, and share resources. Today, humans collaborate using complex languages to achieve remarkable results. What drives this evolution in communication? How does language emerge, adapt, and become vital for teamwork? Understanding the origins of language remains a challenge. A leading hypothesis in linguistics and anthropology posits that language evolved to meet the ecological and social demands of early human cooperation. Language did not arise in isolation, but through shared survival goals. Inspired by this view, we investigate the emergence of language in multi-agent Foraging Games. These environments are designed to reflect the cognitive and ecological constraints believed to have influenced the evolution of communication. Agents operate in a shared grid world with only partial knowledge about other agents and the environment, and must coordinate to complete games like picking up high-value targets or executing temporally ordered actions. Using end-to-end deep reinforcement learning, agents learn both actions and communication strategies from scratch. We find that agents develop communication protocols with hallmark features of natural language: arbitrariness, interchangeability, displacement, cultural transmission, and compositionality. We quantify each property and analyze how different factors, such as population size and temporal dependencies, shape specific aspects of the emergent language. Our framework serves as a platform for studying how language can evolve from partial observability, temporal reasoning, and cooperative goals in embodied multi-agent settings. We will release all data, code, and models publicly.
Abstract:Imagine hearing a dog bark and turning toward the sound only to see a parked car, while the real, silent dog sits elsewhere. Such sensory conflicts test perception, yet humans reliably resolve them by prioritizing sound over misleading visuals. Despite advances in multimodal AI integrating vision and audio, little is known about how these systems handle cross-modal conflicts or whether they favor one modality. In this study, we systematically examine modality bias and conflict resolution in AI sound localization. We assess leading multimodal models and benchmark them against human performance in psychophysics experiments across six audiovisual conditions, including congruent, conflicting, and absent cues. Humans consistently outperform AI, demonstrating superior resilience to conflicting or missing visuals by relying on auditory information. In contrast, AI models often default to visual input, degrading performance to near chance levels. To address this, we finetune a state-of-the-art model using a stereo audio-image dataset generated via 3D simulations. Even with limited training data, the refined model surpasses existing benchmarks. Notably, it also mirrors human-like horizontal localization bias favoring left-right precision-likely due to the stereo audio structure reflecting human ear placement. These findings underscore how sensory input quality and system architecture shape multimodal representation accuracy.
Abstract:We introduce intra-class memorability, where certain images within the same class are more memorable than others despite shared category characteristics. To investigate what features make one object instance more memorable than others, we design and conduct human behavior experiments, where participants are shown a series of images one at a time, and they must identify when the current item matches the item presented a few steps back in the sequence. To quantify memorability, we propose the Intra-Class Memorability score (ICMscore), a novel metric that incorporates the temporal intervals between repeated image presentations into its calculation. Our contributions open new pathways in understanding intra-class memorability by scrutinizing fine-grained visual features that result in the least and most memorable images and laying the groundwork for real-world applications in cognitive science and computer vision.
Abstract:Imagine searching a collection of coins for quarters ($0.25$), dimes ($0.10$), nickels ($0.05$), and pennies ($0.01$)-a hybrid foraging task where observers look for multiple instances of multiple target types. In such tasks, how do target values and their prevalence influence foraging and eye movement behaviors (e.g., should you prioritize rare quarters or common nickels)? To explore this, we conducted human psychophysics experiments, revealing that humans are proficient reward foragers. Their eye fixations are drawn to regions with higher average rewards, fixation durations are longer on more valuable targets, and their cumulative rewards exceed chance, approaching the upper bound of optimal foragers. To probe these decision-making processes of humans, we developed a transformer-based Visual Forager (VF) model trained via reinforcement learning. Our VF model takes a series of targets, their corresponding values, and the search image as inputs, processes the images using foveated vision, and produces a sequence of eye movements along with decisions on whether to collect each fixated item. Our model outperforms all baselines, achieves cumulative rewards comparable to those of humans, and approximates human foraging behavior in eye movements and foraging biases within time-limited environments. Furthermore, stress tests on out-of-distribution tasks with novel targets, unseen values, and varying set sizes demonstrate the VF model's effective generalization. Our work offers valuable insights into the relationship between eye movements and decision-making, with our model serving as a powerful tool for further exploration of this connection. All data, code, and models will be made publicly available.
Abstract:Unsupervised object-centric learning from videos is a promising approach towards learning compositional representations that can be applied to various downstream tasks, such as prediction and reasoning. Recently, it was shown that pretrained Vision Transformers (ViTs) can be useful to learn object-centric representations on real-world video datasets. However, while these approaches succeed at extracting objects from the scenes, the slot-based representations fail to maintain temporal consistency across consecutive frames in a video, i.e. the mapping of objects to slots changes across the video. To address this, we introduce Conditional Autoregressive Slot Attention (CA-SA), a framework that enhances the temporal consistency of extracted object-centric representations in video-centric vision tasks. Leveraging an autoregressive prior network to condition representations on previous timesteps and a novel consistency loss function, CA-SA predicts future slot representations and imposes consistency across frames. We present qualitative and quantitative results showing that our proposed method outperforms the considered baselines on downstream tasks, such as video prediction and visual question-answering tasks.
Abstract:A prior represents a set of beliefs or assumptions about a system, aiding inference and decision-making. In this work, we introduce the challenge of unsupervised prior learning in pose estimation, where AI models learn pose priors of animate objects from videos in a self-supervised manner. These videos present objects performing various actions, providing crucial information about their keypoints and connectivity. While priors are effective in pose estimation, acquiring them can be difficult. We propose a novel method, named Pose Prior Learner (PPL), to learn general pose priors applicable to any object category. PPL uses a hierarchical memory to store compositional parts of prototypical poses, from which we distill a general pose prior. This prior enhances pose estimation accuracy through template transformation and image reconstruction. PPL learns meaningful pose priors without any additional human annotations or interventions, outperforming competitive baselines on both human and animal pose estimation datasets. Notably, our experimental results reveal the effectiveness of PPL using learnt priors for pose estimation on occluded images. Through iterative inference, PPL leverages priors to refine estimated poses, regressing them to any prototypical poses stored in memory. Our code, model, and data will be publicly available.
Abstract:AI models make mistakes when recognizing images-whether in-domain, out-of-domain, or adversarial. Predicting these errors is critical for improving system reliability, reducing costly mistakes, and enabling proactive corrections in real-world applications such as healthcare, finance, and autonomous systems. However, understanding what mistakes AI models make, why they occur, and how to predict them remains an open challenge. Here, we conduct comprehensive empirical evaluations using a "mentor" model-a deep neural network designed to predict another model's errors. Our findings show that the mentor model excels at learning from a mentee's mistakes on adversarial images with small perturbations and generalizes effectively to predict in-domain and out-of-domain errors of the mentee. Additionally, transformer-based mentor models excel at predicting errors across various mentee architectures. Subsequently, we draw insights from these observations and develop an "oracle" mentor model, dubbed SuperMentor, that achieves 78% accuracy in predicting errors across different error types. Our error prediction framework paves the way for future research on anticipating and correcting AI model behaviours, ultimately increasing trust in AI systems. All code, models, and data will be made publicly available.
Abstract:Biological motion perception (BMP) refers to humans' ability to perceive and recognize the actions of living beings solely from their motion patterns, sometimes as minimal as those depicted on point-light displays. While humans excel at these tasks without any prior training, current AI models struggle with poor generalization performance. To close this research gap, we propose the Motion Perceiver (MP). MP solely relies on patch-level optical flows from video clips as inputs. During training, it learns prototypical flow snapshots through a competitive binding mechanism and integrates invariant motion representations to predict action labels for the given video. During inference, we evaluate the generalization ability of all AI models and humans on 62,656 video stimuli spanning 24 BMP conditions using point-light displays in neuroscience. Remarkably, MP outperforms all existing AI models with a maximum improvement of 29% in top-1 action recognition accuracy on these conditions. Moreover, we benchmark all AI models in point-light displays of two standard video datasets in computer vision. MP also demonstrates superior performance in these cases. More interestingly, via psychophysics experiments, we found that MP recognizes biological movements in a way that aligns with human behavioural data. All data and code will be made public.
Abstract:Robot navigation under visual corruption presents a formidable challenge. To address this, we propose a Test-time Adaptation (TTA) method, named as TTA-Nav, for point-goal navigation under visual corruptions. Our "plug-and-play" method incorporates a top-down decoder to a pre-trained navigation model. Firstly, the pre-trained navigation model gets a corrupted image and extracts features. Secondly, the top-down decoder produces the reconstruction given the high-level features extracted by the pre-trained model. Then, it feeds the reconstruction of a corrupted image back to the pre-trained model. Finally, the pre-trained model does forward pass again to output action. Despite being trained solely on clean images, the top-down decoder can reconstruct cleaner images from corrupted ones without the need for gradient-based adaptation. The pre-trained navigation model with our top-down decoder significantly enhances navigation performance across almost all visual corruptions in our benchmarks. Our method improves the success rate of point-goal navigation from the state-of-the-art result of 46% to 94% on the most severe corruption. This suggests its potential for broader application in robotic visual navigation. Project page: https://sites.google.com/view/tta-nav
Abstract:Despite the rapid progress in image generation, emotional image editing remains under-explored. The semantics, context, and structure of an image can evoke emotional responses, making emotional image editing techniques valuable for various real-world applications, including treatment of psychological disorders, commercialization of products, and artistic design. For the first time, we present a novel challenge of emotion-evoked image generation, aiming to synthesize images that evoke target emotions while retaining the semantics and structures of the original scenes. To address this challenge, we propose a diffusion model capable of effectively understanding and editing source images to convey desired emotions and sentiments. Moreover, due to the lack of emotion editing datasets, we provide a unique dataset consisting of 340,000 pairs of images and their emotion annotations. Furthermore, we conduct human psychophysics experiments and introduce four new evaluation metrics to systematically benchmark all the methods. Experimental results demonstrate that our method surpasses all competitive baselines. Our diffusion model is capable of identifying emotional cues from original images, editing images that elicit desired emotions, and meanwhile, preserving the semantic structure of the original images. All code, model, and data will be made public.