Abstract:3D shape completion has broad applications in robotics, digital twin reconstruction, and extended reality (XR). Although recent advances in 3D object and scene completion have achieved impressive results, existing methods lack 3D consistency, are computationally expensive, and struggle to capture sharp object boundaries. Our work (RaySt3R) addresses these limitations by recasting 3D shape completion as a novel view synthesis problem. Specifically, given a single RGB-D image and a novel viewpoint (encoded as a collection of query rays), we train a feedforward transformer to predict depth maps, object masks, and per-pixel confidence scores for those query rays. RaySt3R fuses these predictions across multiple query views to reconstruct complete 3D shapes. We evaluate RaySt3R on synthetic and real-world datasets, and observe it achieves state-of-the-art performance, outperforming the baselines on all datasets by up to 44% in 3D chamfer distance. Project page: https://rayst3r.github.io
Abstract:The possibilities of robot control have multiplied across various domains through the application of deep reinforcement learning. To overcome safety and sampling efficiency issues, deep reinforcement learning models can be trained in a simulation environment, allowing for faster iteration cycles. This can be enhanced further by parallelizing the training process using GPUs. NVIDIA's open-source robot learning framework Orbit leverages this potential by wrapping tensor-based reinforcement learning libraries for high parallelism and building upon Isaac Sim for its simulations. We contribute a detailed description of the implementation of a benchmark reinforcement learning task, namely box pushing, using Orbit. Additionally, we benchmark the performance of our implementation in comparison to a CPU-based implementation and report the performance metrics. Finally, we tune the hyper parameters of our implementation and show that we can generate significantly more samples in the same amount of time by using Orbit.