Abstract:Learning effective multi-modal 3D representations of objects is essential for numerous applications, such as augmented reality and robotics. Existing methods often rely on task-specific embeddings that are tailored either for semantic understanding or geometric reconstruction. As a result, these embeddings typically cannot be decoded into explicit geometry and simultaneously reused across tasks. In this paper, we propose Object-X, a versatile multi-modal object representation framework capable of encoding rich object embeddings (e.g. images, point cloud, text) and decoding them back into detailed geometric and visual reconstructions. Object-X operates by geometrically grounding the captured modalities in a 3D voxel grid and learning an unstructured embedding fusing the information from the voxels with the object attributes. The learned embedding enables 3D Gaussian Splatting-based object reconstruction, while also supporting a range of downstream tasks, including scene alignment, single-image 3D object reconstruction, and localization. Evaluations on two challenging real-world datasets demonstrate that Object-X produces high-fidelity novel-view synthesis comparable to standard 3D Gaussian Splatting, while significantly improving geometric accuracy. Moreover, Object-X achieves competitive performance with specialized methods in scene alignment and localization. Critically, our object-centric descriptors require 3-4 orders of magnitude less storage compared to traditional image- or point cloud-based approaches, establishing Object-X as a scalable and highly practical solution for multi-modal 3D scene representation.
Abstract:We introduce a novel task of generating realistic and diverse 3D hand trajectories given a single image of an object, which could be involved in a hand-object interaction scene or pictured by itself. When humans grasp an object, appropriate trajectories naturally form in our minds to use it for specific tasks. Hand-object interaction trajectory priors can greatly benefit applications in robotics, embodied AI, augmented reality and related fields. However, synthesizing realistic and appropriate hand trajectories given a single object or hand-object interaction image is a highly ambiguous task, requiring to correctly identify the object of interest and possibly even the correct interaction among many possible alternatives. To tackle this challenging problem, we propose the SIGHT-Fusion system, consisting of a curated pipeline for extracting visual features of hand-object interaction details from egocentric videos involving object manipulation, and a diffusion-based conditional motion generation model processing the extracted features. We train our method given video data with corresponding hand trajectory annotations, without supervision in the form of action labels. For the evaluation, we establish benchmarks utilizing the first-person FPHAB and HOI4D datasets, testing our method against various baselines and using multiple metrics. We also introduce task simulators for executing the generated hand trajectories and reporting task success rates as an additional metric. Experiments show that our method generates more appropriate and realistic hand trajectories than baselines and presents promising generalization capability on unseen objects. The accuracy of the generated hand trajectories is confirmed in a physics simulation setting, showcasing the authenticity of the created sequences and their applicability in downstream uses.