Abstract:Unsupervised Camoflaged Object Detection (UCOD) has gained attention since it doesn't need to rely on extensive pixel-level labels. Existing UCOD methods typically generate pseudo-labels using fixed strategies and train 1 x1 convolutional layers as a simple decoder, leading to low performance compared to fully-supervised methods. We emphasize two drawbacks in these approaches: 1). The model is prone to fitting incorrect knowledge due to the pseudo-label containing substantial noise. 2). The simple decoder fails to capture and learn the semantic features of camouflaged objects, especially for small-sized objects, due to the low-resolution pseudo-labels and severe confusion between foreground and background pixels. To this end, we propose a UCOD method with a teacher-student framework via Dynamic Pseudo-label Learning called UCOD-DPL, which contains an Adaptive Pseudo-label Module (APM), a Dual-Branch Adversarial (DBA) decoder, and a Look-Twice mechanism. The APM module adaptively combines pseudo-labels generated by fixed strategies and the teacher model to prevent the model from overfitting incorrect knowledge while preserving the ability for self-correction; the DBA decoder takes adversarial learning of different segmentation objectives, guides the model to overcome the foreground-background confusion of camouflaged objects, and the Look-Twice mechanism mimics the human tendency to zoom in on camouflaged objects and performs secondary refinement on small-sized objects. Extensive experiments show that our method demonstrates outstanding performance, even surpassing some existing fully supervised methods. The code is available now.
Abstract:Open vocabulary image segmentation tackles the challenge of recognizing dynamically adjustable, predefined novel categories at inference time by leveraging vision-language alignment. However, existing paradigms typically perform class-agnostic region segmentation followed by category matching, which deviates from the human visual system's process of recognizing objects based on semantic concepts, leading to poor alignment between region segmentation and target concepts. To bridge this gap, we propose a novel Cognition-Inspired Framework for open vocabulary image segmentation that emulates the human visual recognition process: first forming a conceptual understanding of an object, then perceiving its spatial extent. The framework consists of three core components: (1) A Generative Vision-Language Model (G-VLM) that mimics human cognition by generating object concepts to provide semantic guidance for region segmentation. (2) A Concept-Aware Visual Enhancer Module that fuses textual concept features with global visual representations, enabling adaptive visual perception based on target concepts. (3) A Cognition-Inspired Decoder that integrates local instance features with G-VLM-provided semantic cues, allowing selective classification over a subset of relevant categories. Extensive experiments demonstrate that our framework achieves significant improvements, reaching $27.2$ PQ, $17.0$ mAP, and $35.3$ mIoU on A-150. It further attains $56.2$, $28.2$, $15.4$, $59.2$, $18.7$, and $95.8$ mIoU on Cityscapes, Mapillary Vistas, A-847, PC-59, PC-459, and PAS-20, respectively. In addition, our framework supports vocabulary-free segmentation, offering enhanced flexibility in recognizing unseen categories. Code will be public.
Abstract:Semi-Supervised Instance Segmentation (SSIS) involves classifying and grouping image pixels into distinct object instances using limited labeled data. This learning paradigm usually faces a significant challenge of unstable performance caused by noisy pseudo-labels of instance categories and pixel masks. We find that the prevalent practice of filtering instance pseudo-labels assessing both class and mask quality with a single score threshold, frequently leads to compromises in the trade-off between the qualities of class and mask labels. In this paper, we introduce a novel Pseudo-Label Quality Decoupling and Correction (PL-DC) framework for SSIS to tackle the above challenges. Firstly, at the instance level, a decoupled dual-threshold filtering mechanism is designed to decouple class and mask quality estimations for instance-level pseudo-labels, thereby independently controlling pixel classifying and grouping qualities. Secondly, at the category level, we introduce a dynamic instance category correction module to dynamically correct the pseudo-labels of instance categories, effectively alleviating category confusion. Lastly, we introduce a pixel-level mask uncertainty-aware mechanism at the pixel level to re-weight the mask loss for different pixels, thereby reducing the impact of noise introduced by pixel-level mask pseudo-labels. Extensive experiments on the COCO and Cityscapes datasets demonstrate that the proposed PL-DC achieves significant performance improvements, setting new state-of-the-art results for SSIS. Notably, our PL-DC shows substantial gains even with minimal labeled data, achieving an improvement of +11.6 mAP with just 1% COCO labeled data and +15.5 mAP with 5% Cityscapes labeled data. The code will be public.
Abstract:Small object detection is a broadly investigated research task and is commonly conceptualized as a "pipeline-style" engineering process. In the upstream, images serve as raw materials for processing in the detection pipeline, where pre-trained models are employed to generate initial feature maps. In the midstream, an assigner selects training positive and negative samples. Subsequently, these samples and features are fed into the downstream for classification and regression. Previous small object detection methods often focused on improving isolated stages of the pipeline, thereby neglecting holistic optimization and consequently constraining overall performance gains. To address this issue, we have optimized three key aspects, namely Purifying, Labeling, and Utilizing, in this pipeline, proposing a high-quality Small object detection framework termed PLUSNet. Specifically, PLUSNet comprises three sequential components: the Hierarchical Feature Purifier (HFP) for purifying upstream features, the Multiple Criteria Label Assignment (MCLA) for improving the quality of midstream training samples, and the Frequency Decoupled Head (FDHead) for more effectively exploiting information to accomplish downstream tasks. The proposed PLUS modules are readily integrable into various object detectors, thus enhancing their detection capabilities in multi-scale scenarios. Extensive experiments demonstrate the proposed PLUSNet consistently achieves significant and consistent improvements across multiple datasets for small object detection.
Abstract:Image deocclusion (or amodal completion) aims to recover the invisible regions (\ie, shape and appearance) of occluded instances in images. Despite recent advances, the scarcity of high-quality data that balances diversity, plausibility, and fidelity remains a major obstacle. To address this challenge, we identify three critical elements: leveraging in-the-wild image data for diversity, incorporating human expertise for plausibility, and utilizing generative priors for fidelity. We propose SynergyAmodal, a novel framework for co-synthesizing in-the-wild amodal datasets with comprehensive shape and appearance annotations, which integrates these elements through a tripartite data-human-model collaboration. First, we design an occlusion-grounded self-supervised learning algorithm to harness the diversity of in-the-wild image data, fine-tuning an inpainting diffusion model into a partial completion diffusion model. Second, we establish a co-synthesis pipeline to iteratively filter, refine, select, and annotate the initial deocclusion results of the partial completion diffusion model, ensuring plausibility and fidelity through human expert guidance and prior model constraints. This pipeline generates a high-quality paired amodal dataset with extensive category and scale diversity, comprising approximately 16K pairs. Finally, we train a full completion diffusion model on the synthesized dataset, incorporating text prompts as conditioning signals. Extensive experiments demonstrate the effectiveness of our framework in achieving zero-shot generalization and textual controllability. Our code, dataset, and models will be made publicly available at https://github.com/imlixinyang/SynergyAmodal.
Abstract:Applications of unmanned aerial vehicle (UAV) in logistics, agricultural automation, urban management, and emergency response are highly dependent on oriented object detection (OOD) to enhance visual perception. Although existing datasets for OOD in UAV provide valuable resources, they are often designed for specific downstream tasks.Consequently, they exhibit limited generalization performance in real flight scenarios and fail to thoroughly demonstrate algorithm effectiveness in practical environments. To bridge this critical gap, we introduce CODrone, a comprehensive oriented object detection dataset for UAVs that accurately reflects real-world conditions. It also serves as a new benchmark designed to align with downstream task requirements, ensuring greater applicability and robustness in UAV-based OOD.Based on application requirements, we identify four key limitations in current UAV OOD datasets-low image resolution, limited object categories, single-view imaging, and restricted flight altitudes-and propose corresponding improvements to enhance their applicability and robustness.Furthermore, CODrone contains a broad spectrum of annotated images collected from multiple cities under various lighting conditions, enhancing the realism of the benchmark. To rigorously evaluate CODrone as a new benchmark and gain deeper insights into the novel challenges it presents, we conduct a series of experiments based on 22 classical or SOTA methods.Our evaluation not only assesses the effectiveness of CODrone in real-world scenarios but also highlights key bottlenecks and opportunities to advance OOD in UAV applications.Overall, CODrone fills the data gap in OOD from UAV perspective and provides a benchmark with enhanced generalization capability, better aligning with practical applications and future algorithm development.
Abstract:Bridging natural language and 3D geometry is a crucial step toward flexible, language-driven scene understanding. While recent advances in 3D Gaussian Splatting (3DGS) have enabled fast and high-quality scene reconstruction, research has also explored incorporating open-vocabulary understanding into 3DGS. However, most existing methods require iterative optimization over per-view 2D semantic feature maps, which not only results in inefficiencies but also leads to inconsistent 3D semantics across views. To address these limitations, we introduce a training-free framework that constructs a superpoint graph directly from Gaussian primitives. The superpoint graph partitions the scene into spatially compact and semantically coherent regions, forming view-consistent 3D entities and providing a structured foundation for open-vocabulary understanding. Based on the graph structure, we design an efficient reprojection strategy that lifts 2D semantic features onto the superpoints, avoiding costly multi-view iterative training. The resulting representation ensures strong 3D semantic coherence and naturally supports hierarchical understanding, enabling both coarse- and fine-grained open-vocabulary perception within a unified semantic field. Extensive experiments demonstrate that our method achieves state-of-the-art open-vocabulary segmentation performance, with semantic field reconstruction completed over $30\times$ faster. Our code will be available at https://github.com/Atrovast/THGS.
Abstract:The rise of AI-generated image editing tools has made localized forgeries increasingly realistic, posing challenges for visual content integrity. Although recent efforts have explored localized AIGC detection, existing datasets predominantly focus on object-level forgeries while overlooking broader scene edits in regions such as sky or ground. To address these limitations, we introduce \textbf{BR-Gen}, a large-scale dataset of 150,000 locally forged images with diverse scene-aware annotations, which are based on semantic calibration to ensure high-quality samples. BR-Gen is constructed through a fully automated Perception-Creation-Evaluation pipeline to ensure semantic coherence and visual realism. In addition, we further propose \textbf{NFA-ViT}, a Noise-guided Forgery Amplification Vision Transformer that enhances the detection of localized forgeries by amplifying forgery-related features across the entire image. NFA-ViT mines heterogeneous regions in images, \emph{i.e.}, potential edited areas, by noise fingerprints. Subsequently, attention mechanism is introduced to compel the interaction between normal and abnormal features, thereby propagating the generalization traces throughout the entire image, allowing subtle forgeries to influence a broader context and improving overall detection robustness. Extensive experiments demonstrate that BR-Gen constructs entirely new scenarios that are not covered by existing methods. Take a step further, NFA-ViT outperforms existing methods on BR-Gen and generalizes well across current benchmarks. All data and codes are available at https://github.com/clpbc/BR-Gen.
Abstract:Image restoration~(IR), as a fundamental multimedia data processing task, has a significant impact on downstream visual applications. In recent years, researchers have focused on developing general-purpose IR models capable of handling diverse degradation types, thereby reducing the cost and complexity of model development. Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas. CNNs excel in efficient inference, whereas Transformers and Mamba excel at capturing long-range dependencies and modeling global contexts. While each architecture has demonstrated success in specialized, single-task settings, limited efforts have been made to effectively integrate heterogeneous architectures to jointly address diverse IR challenges. To bridge this gap, we propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion. RestorMixer adopts a three-stage encoder-decoder structure, where each stage is tailored to the resolution and feature characteristics of the input. In the initial high-resolution stage, CNN-based blocks are employed to rapidly extract shallow local features. In the subsequent stages, we integrate a refined multi-directional scanning Mamba module with a multi-scale window-based self-attention mechanism. This hierarchical and adaptive design enables the model to leverage the strengths of CNNs in local feature extraction, Mamba in global context modeling, and attention mechanisms in dynamic feature refinement. Extensive experimental results demonstrate that RestorMixer achieves leading performance across multiple IR tasks while maintaining high inference efficiency. The official code can be accessed at https://github.com/ClimBin/RestorMixer.
Abstract:Although fully-supervised oriented object detection has made significant progress in multimodal remote sensing image understanding, it comes at the cost of labor-intensive annotation. Recent studies have explored weakly and semi-supervised learning to alleviate this burden. However, these methods overlook the difficulties posed by dense annotations in complex remote sensing scenes. In this paper, we introduce a novel setting called sparsely annotated oriented object detection (SAOOD), which only labels partial instances, and propose a solution to address its challenges. Specifically, we focus on two key issues in the setting: (1) sparse labeling leading to overfitting on limited foreground representations, and (2) unlabeled objects (false negatives) confusing feature learning. To this end, we propose the S$^2$Teacher, a novel method that progressively mines pseudo-labels for unlabeled objects, from easy to hard, to enhance foreground representations. Additionally, it reweights the loss of unlabeled objects to mitigate their impact during training. Extensive experiments demonstrate that S$^2$Teacher not only significantly improves detector performance across different sparse annotation levels but also achieves near-fully-supervised performance on the DOTA dataset with only 10% annotation instances, effectively balancing detection accuracy with annotation efficiency. The code will be public.