Abstract:Watermarking large language models (LLMs) is vital for preventing their misuse, including the fabrication of fake news, plagiarism, and spam. It is especially important to watermark LLM-generated code, as it often contains intellectual property.However, we found that existing methods for watermarking LLM-generated code fail to address comment removal attack.In such cases, an attacker can simply remove the comments from the generated code without affecting its functionality, significantly reducing the effectiveness of current code-watermarking techniques.On the other hand, injecting a watermark into code is challenging because, as previous works have noted, most code represents a low-entropy scenario compared to natural language. Our approach to addressing this issue involves leveraging prior knowledge to distinguish between low-entropy and high-entropy parts of the code, as indicated by a Cue List of words.We then inject the watermark guided by this Cue List, achieving higher detectability and usability than existing methods.We evaluated our proposed method on HumanEvaland compared our method with three state-of-the-art code watermarking techniques. The results demonstrate the effectiveness of our approach.
Abstract:Artificial Intelligence (AI) has made it possible for anyone to create images, audio, and video with unprecedented ease, enriching education, communication, and creative expression. At the same time, the rapid rise of AI-generated media has introduced serious risks, including misinformation, identity misuse, and the erosion of public trust as synthetic content becomes increasingly indistinguishable from real media. Although deepfake detection has advanced, many existing tools remain closed-source, limited in modality, or lacking transparency and educational value, making it difficult for users to understand how detection decisions are made. To address these gaps, we introduce SynthGuard, an open, user-friendly platform for detecting and analyzing AI-generated multimedia using both traditional detectors and multimodal large language models (MLLMs). SynthGuard provides explainable inference, unified image and audio support, and an interactive interface designed to make forensic analysis accessible to researchers, educators, and the public. The SynthGuard platform is available at: https://in-engr-nova.it.purdue.edu/
Abstract:The increasing reliance on natural language generation (NLG) models, particularly large language models, has raised concerns about the reliability and accuracy of their outputs. A key challenge is hallucination, where models produce plausible but incorrect information. As a result, hallucination detection has become a critical task. In this work, we introduce a comprehensive hallucination taxonomy with 11 categories across various NLG tasks and propose the HAllucination Detection (HAD) models https://github.com/pku0xff/HAD, which integrate hallucination detection, span-level identification, and correction into a single inference process. Trained on an elaborate synthetic dataset of about 90K samples, our HAD models are versatile and can be applied to various NLG tasks. We also carefully annotate a test set for hallucination detection, called HADTest, which contains 2,248 samples. Evaluations on in-domain and out-of-domain test sets show that our HAD models generally outperform the existing baselines, achieving state-of-the-art results on HaluEval, FactCHD, and FaithBench, confirming their robustness and versatility.
Abstract:In the era of foundation models, achieving a unified understanding of different dynamic objects through a single network has the potential to empower stronger spatial intelligence. Moreover, accurate estimation of animal pose and shape across diverse species is essential for quantitative analysis in biological research. However, this topic remains underexplored due to the limited network capacity of previous methods and the scarcity of comprehensive multi-species datasets. To address these limitations, we introduce AniMer+, an extended version of our scalable AniMer framework. In this paper, we focus on a unified approach for reconstructing mammals (mammalia) and birds (aves). A key innovation of AniMer+ is its high-capacity, family-aware Vision Transformer (ViT) incorporating a Mixture-of-Experts (MoE) design. Its architecture partitions network layers into taxa-specific components (for mammalia and aves) and taxa-shared components, enabling efficient learning of both distinct and common anatomical features within a single model. To overcome the critical shortage of 3D training data, especially for birds, we introduce a diffusion-based conditional image generation pipeline. This pipeline produces two large-scale synthetic datasets: CtrlAni3D for quadrupeds and CtrlAVES3D for birds. To note, CtrlAVES3D is the first large-scale, 3D-annotated dataset for birds, which is crucial for resolving single-view depth ambiguities. Trained on an aggregated collection of 41.3k mammalian and 12.4k avian images (combining real and synthetic data), our method demonstrates superior performance over existing approaches across a wide range of benchmarks, including the challenging out-of-domain Animal Kingdom dataset. Ablation studies confirm the effectiveness of both our novel network architecture and the generated synthetic datasets in enhancing real-world application performance.
Abstract:We introduce LEDOM, the first purely reverse language model, trained autoregressively on 435B tokens with 2B and 7B parameter variants, which processes sequences in reverse temporal order through previous token prediction. For the first time, we present the reverse language model as a potential foundational model across general tasks, accompanied by a set of intriguing examples and insights. Based on LEDOM, we further introduce a novel application: Reverse Reward, where LEDOM-guided reranking of forward language model outputs leads to substantial performance improvements on mathematical reasoning tasks. This approach leverages LEDOM's unique backward reasoning capability to refine generation quality through posterior evaluation. Our findings suggest that LEDOM exhibits unique characteristics with broad application potential. We will release all models, training code, and pre-training data to facilitate future research.
Abstract:The Area Under the ROC Curve (AUC) is a key metric for classification, especially under class imbalance, with growing research focus on optimizing AUC over accuracy in applications like medical image analysis and deepfake detection. This leads to fairness in AUC optimization becoming crucial as biases can impact protected groups. While various fairness mitigation techniques exist, fairness considerations in AUC optimization remain in their early stages, with most research focusing on improving AUC fairness under the assumption of clean protected groups. However, these studies often overlook the impact of noisy protected groups, leading to fairness violations in practice. To address this, we propose the first robust AUC fairness approach under noisy protected groups with fairness theoretical guarantees using distributionally robust optimization. Extensive experiments on tabular and image datasets show that our method outperforms state-of-the-art approaches in preserving AUC fairness. The code is in https://github.com/Purdue-M2/AUC_Fairness_with_Noisy_Groups.
Abstract:Large language models (LLMs) achieve impressive performance across domains but face significant challenges when deployed on consumer-grade GPUs or personal devices such as laptops, due to high memory consumption and inference costs. Post-training quantization (PTQ) of LLMs offers a promising solution that reduces their memory footprint and decoding latency. In practice, PTQ with uniform quantization representation is favored for its efficiency and ease of deployment since uniform quantization is widely supported by mainstream hardware and software libraries. Recent studies on $\geq 2$-bit uniform quantization have led to noticeable improvements in post-quantization model performance; however, they primarily focus on quantization methodologies, while the initialization of quantization parameters is underexplored and still relies on the suboptimal Min-Max strategies. In this work, we propose NeUQI, a method devoted to efficiently determining near-optimal initial parameters for uniform quantization. NeUQI is orthogonal to prior quantization methodologies and can seamlessly integrate with them. The experiments with the LLaMA and Qwen families on various tasks demonstrate that our NeUQI consistently outperforms existing methods. Furthermore, when combined with a lightweight distillation strategy, NeUQI can achieve superior performance to PV-tuning, a much more resource-intensive approach.
Abstract:The 3D human pose is vital for modern computer vision and computer graphics, and its prediction has drawn attention in recent years. 3D human pose prediction aims at forecasting a human's future motion from the previous sequence. Ignoring that the arbitrariness of human motion sequences has a firm origin in transition in both temporal and spatial axes limits the performance of state-of-the-art methods, leading them to struggle with making precise predictions on complex cases, e.g., arbitrarily posing or greeting. To alleviate this problem, a network called HaarMoDic is proposed in this paper, which utilizes the 2D Haar transform to project joints to higher resolution coordinates where the network can access spatial and temporal information simultaneously. An ablation study proves that the significant contributing module within the HaarModic Network is the Multi-Resolution Haar (MR-Haar) block. Instead of mining in one of two axes or extracting separately, the MR-Haar block projects whole motion sequences to a mixed-up coordinate in higher resolution with 2D Haar Transform, allowing the network to give scope to information from both axes in different resolutions. With the MR-Haar block, the HaarMoDic network can make predictions referring to a broader range of information. Experimental results demonstrate that HaarMoDic surpasses state-of-the-art methods in every testing interval on the Human3.6M dataset in the Mean Per Joint Position Error (MPJPE) metric.
Abstract:Deepfakes, created using advanced AI techniques such as Variational Autoencoder and Generative Adversarial Networks, have evolved from research and entertainment applications into tools for malicious activities, posing significant threats to digital trust. Current deepfake detection techniques have evolved from CNN-based methods focused on local artifacts to more advanced approaches using vision transformers and multimodal models like CLIP, which capture global anomalies and improve cross-domain generalization. Despite recent progress, state-of-the-art deepfake detectors still face major challenges in handling distribution shifts from emerging generative models and addressing severe class imbalance between authentic and fake samples in deepfake datasets, which limits their robustness and detection accuracy. To address these challenges, we propose a framework that combines dynamic loss reweighting and ranking-based optimization, which achieves superior generalization and performance under imbalanced dataset conditions. The code is available at https://github.com/Purdue-M2/SP_CUP.
Abstract:Imaging the human body's morphological and angiographic information is essential for diagnosing, monitoring, and treating medical conditions. Ultrasonography performs the morphological assessment of the soft tissue based on acoustic impedance variations, whereas photoacoustic tomography (PAT) can visualize blood vessels based on intrinsic hemoglobin absorption. Three-dimensional (3D) panoramic imaging of the vasculature is generally not practical in conventional ultrasonography with limited field-of-view (FOV) probes, and PAT does not provide sufficient scattering-based soft tissue morphological contrast. Complementing each other, fast panoramic rotational ultrasound tomography (RUST) and PAT are integrated for hybrid rotational ultrasound and photoacoustic tomography (RUS-PAT), which obtains 3D ultrasound structural and PAT angiographic images of the human body quasi-simultaneously. The RUST functionality is achieved in a cost-effective manner using a single-element ultrasonic transducer for ultrasound transmission and rotating arc-shaped arrays for 3D panoramic detection. RUST is superior to conventional ultrasonography, which either has a limited FOV with a linear array or is high-cost with a hemispherical array that requires both transmission and receiving. By switching the acoustic source to a light source, the system is conveniently converted to PAT mode to acquire angiographic images in the same region. Using RUS-PAT, we have successfully imaged the human head, breast, hand, and foot with a 10 cm diameter FOV, submillimeter isotropic resolution, and 10 s imaging time for each modality. The 3D RUS-PAT is a powerful tool for high-speed, 3D, dual-contrast imaging of the human body with potential for rapid clinical translation.