School of Electrical and Information Engineering, The University of Sydney, Australia
Abstract:Improving the efficiency of Neural Architecture Search (NAS) is a challenging but significant task that has received much attention. Previous works mainly adopted the Differentiable Architecture Search (DARTS) and improved its search strategies or modules to enhance search efficiency. Recently, some methods have started considering data reduction for speedup, but they are not tightly coupled with the architecture search process, resulting in sub-optimal performance. To this end, this work pioneers an exploration into the critical role of dataset characteristics for DARTS bi-level optimization, and then proposes a novel Bi-level Data Pruning (BDP) paradigm that targets the weights and architecture levels of DARTS to enhance efficiency from a data perspective. Specifically, we introduce a new progressive data pruning strategy that utilizes supernet prediction dynamics as the metric, to gradually prune unsuitable samples for DARTS during the search. An effective automatic class balance constraint is also integrated into BDP, to suppress potential class imbalances resulting from data-efficient algorithms. Comprehensive evaluations on the NAS-Bench-201 search space, DARTS search space, and MobileNet-like search space validate that BDP reduces search costs by over 50% while achieving superior performance when applied to baseline DARTS. Besides, we demonstrate that BDP can harmoniously integrate with advanced DARTS variants, like PC-DARTS and \b{eta}-DARTS, offering an approximately 2 times speedup with minimal performance compromises.
Abstract:De novo peptide sequencing from mass spectrometry (MS) data is a critical task in proteomics research. Traditional de novo algorithms have encountered a bottleneck in accuracy due to the inherent complexity of proteomics data. While deep learning-based methods have shown progress, they reduce the problem to a translation task, potentially overlooking critical nuances between spectra and peptides. In our research, we present ContraNovo, a pioneering algorithm that leverages contrastive learning to extract the relationship between spectra and peptides and incorporates the mass information into peptide decoding, aiming to address these intricacies more efficiently. Through rigorous evaluations on two benchmark datasets, ContraNovo consistently outshines contemporary state-of-the-art solutions, underscoring its promising potential in enhancing de novo peptide sequencing. The source code is available at https://github.com/BEAM-Labs/ContraNovo.
Abstract:The weather forecasting system is important for science and society, and significant achievements have been made in applying artificial intelligence (AI) to medium-range weather forecasting. However, existing AI-based weather forecasting models still rely on analysis or reanalysis products from the traditional numerical weather prediction (NWP) systems as initial conditions for making predictions, preventing them from being fully independent systems. As a crucial component of an end-to-end global weather forecasting system, data assimilation is vital in generating initial states for forecasting. In this paper, we present an AI-based data assimilation model, i.e., Adas, for global weather variables, which learns to generate the analysis from the background and sparse observations. Different from existing assimilation methods, Adas employs the gated convolution module to handle sparse observations and the gated cross-attention module for capturing the interactions between observations and background efficiently, which are guided by the confidence matrix to represent the availability and quality of observations. Then, we combine Adas with the advanced AI-based weather forecasting model (i.e., FengWu) and construct the first end-to-end AI-based global weather forecasting system: FengWu-Adas. Experiments demonstrate that Adas can assimilate the simulated global observations with the AI-generated background through a one-year simulation and generate high-quality analysis stably in a cyclic manner. Based on the generated analysis, FengWu-Adas exhibits skillful performance and outperforms the Integrated Forecasting System (IFS) in weather forecasting over seven days.
Abstract:Recent studies have shown that deep learning (DL) models can skillfully predict the El Ni\~no-Southern Oscillation (ENSO) forecasts over 1.5 years ahead. However, concerns regarding the reliability of predictions made by DL methods persist, including potential overfitting issues and lack of interpretability. Here, we propose ResoNet, a DL model that combines convolutional neural network (CNN) and Transformer architectures. This hybrid architecture design enables our model to adequately capture local SSTA as well as long-range inter-basin interactions across oceans. We show that ResoNet can robustly predict ESNO at lead times between 19 and 26 months, thus outperforming existing approaches in terms of the forecast horizon. According to an explainability method applied to ResoNet predictions of El Ni\~no and La Ni\~na events from 1- to 18-month lead, we find that it predicts the Ni\~no3.4 index based on multiple physically reasonable mechanisms, such as the Recharge Oscillator concept, Seasonal Footprint Mechanism, and Indian Ocean capacitor effect. Moreover, we demonstrate that for the first time, the asymmetry between El Ni\~no and La Ni\~na development can be captured by ResoNet. Our results could help alleviate skepticism about applying DL models for ENSO prediction and encourage more attempts to discover and predict climate phenomena using AI methods.
Abstract:Weather forecasting is a crucial yet highly challenging task. With the maturity of Artificial Intelligence (AI), the emergence of data-driven weather forecasting models has opened up a new paradigm for the development of weather forecasting systems. Despite the significant successes that have been achieved (e.g., surpassing advanced traditional physical models for global medium-range forecasting), existing data-driven weather forecasting models still rely on the analysis fields generated by the traditional assimilation and forecasting system, which hampers the significance of data-driven weather forecasting models regarding both computational cost and forecasting accuracy. In this work, we explore the possibility of coupling the data-driven weather forecasting model with data assimilation by integrating the global AI weather forecasting model, FengWu, with one of the most popular assimilation algorithms, Four-Dimensional Variational (4DVar) assimilation, and develop an AI-based cyclic weather forecasting system, FengWu-4DVar. FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model and consider the temporal evolution of atmospheric dynamics to obtain accurate analysis fields for making predictions in a cycling manner without the help of physical models. Owning to the auto-differentiation ability of deep learning models, FengWu-4DVar eliminates the need of developing the cumbersome adjoint model, which is usually required in the traditional implementation of the 4DVar algorithm. Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields for making accurate and efficient iterative predictions.
Abstract:This paper is not motivated to seek innovation within the attention mechanism. Instead, it focuses on overcoming the existing trade-offs between accuracy and efficiency within the context of point cloud processing, leveraging the power of scale. Drawing inspiration from recent advances in 3D large-scale representation learning, we recognize that model performance is more influenced by scale than by intricate design. Therefore, we present Point Transformer V3 (PTv3), which prioritizes simplicity and efficiency over the accuracy of certain mechanisms that are minor to the overall performance after scaling, such as replacing the precise neighbor search by KNN with an efficient serialized neighbor mapping of point clouds organized with specific patterns. This principle enables significant scaling, expanding the receptive field from 16 to 1024 points while remaining efficient (a 3x increase in processing speed and a 10x improvement in memory efficiency compared with its predecessor, PTv2). PTv3 attains state-of-the-art results on over 20 downstream tasks that span both indoor and outdoor scenarios. Further enhanced with multi-dataset joint training, PTv3 pushes these results to a higher level.
Abstract:Recent advancements in text-to-3D generation technology have significantly advanced the conversion of textual descriptions into imaginative well-geometrical and finely textured 3D objects. Despite these developments, a prevalent limitation arises from the use of RGB data in diffusion or reconstruction models, which often results in models with inherent lighting and shadows effects that detract from their realism, thereby limiting their usability in applications that demand accurate relighting capabilities. To bridge this gap, we present UniDream, a text-to-3D generation framework by incorporating unified diffusion priors. Our approach consists of three main components: (1) a dual-phase training process to get albedo-normal aligned multi-view diffusion and reconstruction models, (2) a progressive generation procedure for geometry and albedo-textures based on Score Distillation Sample (SDS) using the trained reconstruction and diffusion models, and (3) an innovative application of SDS for finalizing PBR generation while keeping a fixed albedo based on Stable Diffusion model. Extensive evaluations demonstrate that UniDream surpasses existing methods in generating 3D objects with clearer albedo textures, smoother surfaces, enhanced realism, and superior relighting capabilities.
Abstract:Offline-to-online Reinforcement Learning (O2O RL) aims to improve the performance of offline pretrained policy using only a few online samples. Built on offline RL algorithms, most O2O methods focus on the balance between RL objective and pessimism, or the utilization of offline and online samples. In this paper, from a novel perspective, we systematically study the challenges that remain in O2O RL and identify that the reason behind the slow improvement of the performance and the instability of online finetuning lies in the inaccurate Q-value estimation inherited from offline pretraining. Specifically, we demonstrate that the estimation bias and the inaccurate rank of Q-value cause a misleading signal for the policy update, making the standard offline RL algorithms, such as CQL and TD3-BC, ineffective in the online finetuning. Based on this observation, we address the problem of Q-value estimation by two techniques: (1) perturbed value update and (2) increased frequency of Q-value updates. The first technique smooths out biased Q-value estimation with sharp peaks, preventing early-stage policy exploitation of sub-optimal actions. The second one alleviates the estimation bias inherited from offline pretraining by accelerating learning. Extensive experiments on the MuJoco and Adroit environments demonstrate that the proposed method, named SO2, significantly alleviates Q-value estimation issues, and consistently improves the performance against the state-of-the-art methods by up to 83.1%.
Abstract:Human-centric perception tasks, e.g., human mesh recovery, pedestrian detection, skeleton-based action recognition, and pose estimation, have wide industrial applications, such as metaverse and sports analysis. There is a recent surge to develop human-centric foundation models that can benefit a broad range of human-centric perception tasks. While many human-centric foundation models have achieved success, most of them only excel in 2D vision tasks or require extensive fine-tuning for practical deployment in real-world scenarios. These limitations severely restrict their usability across various downstream tasks and situations. To tackle these problems, we present Hulk, the first multimodal human-centric generalist model, capable of addressing most of the mainstream tasks simultaneously without task-specific finetuning, covering 2D vision, 3D vision, skeleton-based, and vision-language tasks. The key to achieving this is condensing various task-specific heads into two general heads, one for discrete representations, e.g., languages, and the other for continuous representations, e.g., location coordinates. The outputs of two heads can be further stacked into four distinct input and output modalities. This uniform representation enables Hulk to treat human-centric tasks as modality translation, integrating knowledge across a wide range of tasks. To validate the effectiveness of our proposed method, we conduct comprehensive experiments on 11 benchmarks across 8 human-centric tasks. Experimental results surpass previous methods substantially, demonstrating the superiority of our proposed method. The code will be available on https://github.com/OpenGVLab/HumanBench.
Abstract:This paper does not present a novel method. Instead, it delves into an essential, yet must-know baseline in light of the latest advancements in Generative Artificial Intelligence (GenAI): the utilization of GPT-4 for visual understanding. Our study centers on the evaluation of GPT-4's linguistic and visual capabilities in zero-shot visual recognition tasks. Specifically, we explore the potential of its generated rich textual descriptions across various categories to enhance recognition performance without any training. Additionally, we evaluate its visual proficiency in directly recognizing diverse visual content. To achieve this, we conduct an extensive series of experiments, systematically quantifying the performance of GPT-4 across three modalities: images, videos, and point clouds. This comprehensive evaluation encompasses a total of 16 widely recognized benchmark datasets, providing top-1 and top-5 accuracy metrics. Our study reveals that leveraging GPT-4's advanced linguistic knowledge to generate rich descriptions markedly improves zero-shot recognition. In terms of visual proficiency, GPT-4V's average performance across 16 datasets sits roughly between the capabilities of OpenAI-CLIP's ViT-L and EVA-CLIP's ViT-E. We hope that this research will contribute valuable data points and experience for future studies. We release our code at https://github.com/whwu95/GPT4Vis.