Abstract:We propose a novel two-stage framework for sensor depth enhancement, called Perfecting Depth. This framework leverages the stochastic nature of diffusion models to automatically detect unreliable depth regions while preserving geometric cues. In the first stage (stochastic estimation), the method identifies unreliable measurements and infers geometric structure by leveraging a training-inference domain gap. In the second stage (deterministic refinement), it enforces structural consistency and pixel-level accuracy using the uncertainty map derived from the first stage. By combining stochastic uncertainty modeling with deterministic refinement, our method yields dense, artifact-free depth maps with improved reliability. Experimental results demonstrate its effectiveness across diverse real-world scenarios. Furthermore, theoretical analysis, various experiments, and qualitative visualizations validate its robustness and scalability. Our framework sets a new baseline for sensor depth enhancement, with potential applications in autonomous driving, robotics, and immersive technologies.
Abstract:We present LTM3D, a Latent Token space Modeling framework for conditional 3D shape generation that integrates the strengths of diffusion and auto-regressive (AR) models. While diffusion-based methods effectively model continuous latent spaces and AR models excel at capturing inter-token dependencies, combining these paradigms for 3D shape generation remains a challenge. To address this, LTM3D features a Conditional Distribution Modeling backbone, leveraging a masked autoencoder and a diffusion model to enhance token dependency learning. Additionally, we introduce Prefix Learning, which aligns condition tokens with shape latent tokens during generation, improving flexibility across modalities. We further propose a Latent Token Reconstruction module with Reconstruction-Guided Sampling to reduce uncertainty and enhance structural fidelity in generated shapes. Our approach operates in token space, enabling support for multiple 3D representations, including signed distance fields, point clouds, meshes, and 3D Gaussian Splatting. Extensive experiments on image- and text-conditioned shape generation tasks demonstrate that LTM3D outperforms existing methods in prompt fidelity and structural accuracy while offering a generalizable framework for multi-modal, multi-representation 3D generation.
Abstract:External knowledge has played a crucial role in the recent development of computer use agents. We identify a critical knowledge-execution gap: retrieved knowledge often fails to translate into effective real-world task execution. Our analysis shows even 90\% correct knowledge yields only 41\% execution success rate. To bridge this gap, we propose UI-Evol, a plug-and-play module for autonomous GUI knowledge evolution. UI-Evol consists of two stages: a Retrace Stage that extracts faithful objective action sequences from actual agent-environment interactions, and a Critique Stage that refines existing knowledge by comparing these sequences against external references. We conduct comprehensive experiments on the OSWorld benchmark with the state-of-the-art Agent S2. Our results demonstrate that UI-Evol not only significantly boosts task performance but also addresses a previously overlooked issue of high behavioral standard deviation in computer use agents, leading to superior performance on computer use tasks and substantially improved agent reliability.
Abstract:Target audio source separation with natural language queries presents a promising paradigm for extracting arbitrary audio events through arbitrary text descriptions. Existing methods mainly face two challenges, the difficulty in jointly modeling acoustic-textual alignment and semantic-aware separation within a blindly-learned single-stage architecture, and the reliance on large-scale accurately-labeled training data to compensate for inefficient cross-modal learning and separation. To address these challenges, we propose a hierarchical decomposition framework, HSM-TSS, that decouples the task into global-local semantic-guided feature separation and structure-preserving acoustic reconstruction. Our approach introduces a dual-stage mechanism for semantic separation, operating on distinct global and local semantic feature spaces. We first perform global-semantic separation through a global semantic feature space aligned with text queries. A Q-Audio architecture is employed to align audio and text modalities, serving as pretrained global-semantic encoders. Conditioned on the predicted global feature, we then perform the second-stage local-semantic separation on AudioMAE features that preserve time-frequency structures, followed by acoustic reconstruction. We also propose an instruction processing pipeline to parse arbitrary text queries into structured operations, extraction or removal, coupled with audio descriptions, enabling flexible sound manipulation. Our method achieves state-of-the-art separation performance with data-efficient training while maintaining superior semantic consistency with queries in complex auditory scenes.
Abstract:Zero-shot streaming text-to-speech is an important research topic in human-computer interaction. Existing methods primarily use a lookahead mechanism, relying on future text to achieve natural streaming speech synthesis, which introduces high processing latency. To address this issue, we propose SMLLE, a streaming framework for generating high-quality speech frame-by-frame. SMLLE employs a Transducer to convert text into semantic tokens in real time while simultaneously obtaining duration alignment information. The combined outputs are then fed into a fully autoregressive (AR) streaming model to reconstruct mel-spectrograms. To further stabilize the generation process, we design a Delete < Bos > Mechanism that allows the AR model to access future text introducing as minimal delay as possible. Experimental results suggest that the SMLLE outperforms current streaming TTS methods and achieves comparable performance over sentence-level TTS systems. Samples are available on https://anonymous.4open.science/w/demo_page-48B7/.
Abstract:Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later.
Abstract:Most existing approaches for image and video compression perform transform coding in the pixel space to reduce redundancy. However, due to the misalignment between the pixel-space distortion and human perception, such schemes often face the difficulties in achieving both high-realism and high-fidelity at ultra-low bitrate. To solve this problem, we propose \textbf{G}enerative \textbf{L}atent \textbf{C}oding (\textbf{GLC}) models for image and video compression, termed GLC-image and GLC-Video. The transform coding of GLC is conducted in the latent space of a generative vector-quantized variational auto-encoder (VQ-VAE). Compared to the pixel-space, such a latent space offers greater sparsity, richer semantics and better alignment with human perception, and show its advantages in achieving high-realism and high-fidelity compression. To further enhance performance, we improve the hyper prior by introducing a spatial categorical hyper module in GLC-image and a spatio-temporal categorical hyper module in GLC-video. Additionally, the code-prediction-based loss function is proposed to enhance the semantic consistency. Experiments demonstrate that our scheme shows high visual quality at ultra-low bitrate for both image and video compression. For image compression, GLC-image achieves an impressive bitrate of less than $0.04$ bpp, achieving the same FID as previous SOTA model MS-ILLM while using $45\%$ fewer bitrate on the CLIC 2020 test set. For video compression, GLC-video achieves 65.3\% bitrate saving over PLVC in terms of DISTS.
Abstract:While recent diffusion-based generative image codecs have shown impressive performance, their iterative sampling process introduces unpleasing latency. In this work, we revisit the design of a diffusion-based codec and argue that multi-step sampling is not necessary for generative compression. Based on this insight, we propose OneDC, a One-step Diffusion-based generative image Codec -- that integrates a latent compression module with a one-step diffusion generator. Recognizing the critical role of semantic guidance in one-step diffusion, we propose using the hyperprior as a semantic signal, overcoming the limitations of text prompts in representing complex visual content. To further enhance the semantic capability of the hyperprior, we introduce a semantic distillation mechanism that transfers knowledge from a pretrained generative tokenizer to the hyperprior codec. Additionally, we adopt a hybrid pixel- and latent-domain optimization to jointly enhance both reconstruction fidelity and perceptual realism. Extensive experiments demonstrate that OneDC achieves SOTA perceptual quality even with one-step generation, offering over 40% bitrate reduction and 20x faster decoding compared to prior multi-step diffusion-based codecs. Code will be released later.
Abstract:Recently, perceptual image compression has achieved significant advancements, delivering high visual quality at low bitrates for natural images. However, for screen content, existing methods often produce noticeable artifacts when compressing text. To tackle this challenge, we propose versatile perceptual screen image compression with diffusion rendering (PICD), a codec that works well for both screen and natural images. More specifically, we propose a compression framework that encodes the text and image separately, and renders them into one image using diffusion model. For this diffusion rendering, we integrate conditional information into diffusion models at three distinct levels: 1). Domain level: We fine-tune the base diffusion model using text content prompts with screen content. 2). Adaptor level: We develop an efficient adaptor to control the diffusion model using compressed image and text as input. 3). Instance level: We apply instance-wise guidance to further enhance the decoding process. Empirically, our PICD surpasses existing perceptual codecs in terms of both text accuracy and perceptual quality. Additionally, without text conditions, our approach serves effectively as a perceptual codec for natural images.
Abstract:Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .