Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China, Center for Digital Health and Artificial Intelligence, Peking University First Hospital, Beijing, China
Abstract:Recent advancements in Multimodal Large Language Models (MLLMs) have enabled them to effectively integrate vision and language, addressing a variety of downstream tasks. However, despite their significant success, these models still exhibit hallucination phenomena, where the outputs appear plausible but do not align with the content of the images. To mitigate this issue, we introduce Local Perception Search (LPS), a decoding method during inference that is both simple and training-free, yet effectively suppresses hallucinations. This method leverages local visual prior information as a value function to correct the decoding process. Additionally, we observe that the impact of the local visual prior on model performance is more pronounced in scenarios with high levels of image noise. Notably, LPS is a plug-and-play approach that is compatible with various models. Extensive experiments on widely used hallucination benchmarks and noisy data demonstrate that LPS significantly reduces the incidence of hallucinations compared to the baseline, showing exceptional performance, particularly in noisy settings.
Abstract:Modern language models often rely on Reinforcement Learning from Human Feedback (RLHF) to encourage safe behaviors. However, they remain vulnerable to adversarial attacks due to three key limitations: (1) the inefficiency and high cost of human annotation, (2) the vast diversity of potential adversarial attacks, and (3) the risk of feedback bias and reward hacking. To address these challenges, we introduce Adversarial Preference Learning (APL), an iterative adversarial training method incorporating three key innovations. First, a direct harmfulness metric based on the model's intrinsic preference probabilities, eliminating reliance on external assessment. Second, a conditional generative attacker that synthesizes input-specific adversarial variations. Third, an iterative framework with automated closed-loop feedback, enabling continuous adaptation through vulnerability discovery and mitigation. Experiments on Mistral-7B-Instruct-v0.3 demonstrate that APL significantly enhances robustness, achieving 83.33% harmlessness win rate over the base model (evaluated by GPT-4o), reducing harmful outputs from 5.88% to 0.43% (measured by LLaMA-Guard), and lowering attack success rate by up to 65% according to HarmBench. Notably, APL maintains competitive utility, with an MT-Bench score of 6.59 (comparable to the baseline 6.78) and an LC-WinRate of 46.52% against the base model.
Abstract:RGB-Thermal (RGB-T) object detection utilizes thermal infrared (TIR) images to complement RGB data, improving robustness in challenging conditions. Traditional RGB-T detectors assume balanced training data, where both modalities contribute equally. However, in real-world scenarios, modality degradation-due to environmental factors or technical issues-can lead to extreme modality imbalance, causing out-of-distribution (OOD) issues during testing and disrupting model convergence during training. This paper addresses these challenges by proposing a novel base-and-auxiliary detector architecture. We introduce a modality interaction module to adaptively weigh modalities based on their quality and handle imbalanced samples effectively. Additionally, we leverage modality pseudo-degradation to simulate real-world imbalances in training data. The base detector, trained on high-quality pairs, provides a consistency constraint for the auxiliary detector, which receives degraded samples. This framework enhances model robustness, ensuring reliable performance even under severe modality degradation. Experimental results demonstrate the effectiveness of our method in handling extreme modality imbalances~(decreasing the Missing Rate by 55%) and improving performance across various baseline detectors.
Abstract:The safety and reliability of Automated Driving Systems (ADS) are paramount, necessitating rigorous testing methodologies to uncover potential failures before deployment. Traditional testing approaches often prioritize either natural scenario sampling or safety-critical scenario generation, resulting in overly simplistic or unrealistic hazardous tests. In practice, the demand for natural scenarios (e.g., when evaluating the ADS's reliability in real-world conditions), critical scenarios (e.g., when evaluating safety in critical situations), or somewhere in between (e.g., when testing the ADS in regions with less civilized drivers) varies depending on the testing objectives. To address this issue, we propose the On-demand Scenario Generation (OSG) Framework, which generates diverse scenarios with varying risk levels. Achieving the goal of OSG is challenging due to the complexity of quantifying the criticalness and naturalness stemming from intricate vehicle-environment interactions, as well as the need to maintain scenario diversity across various risk levels. OSG learns from real-world traffic datasets and employs a Risk Intensity Regulator to quantitatively control the risk level. It also leverages an improved heuristic search method to ensure scenario diversity. We evaluate OSG on the Carla simulators using various ADSs. We verify OSG's ability to generate scenarios with different risk levels and demonstrate its necessity by comparing accident types across risk levels. With the help of OSG, we are now able to systematically and objectively compare the performance of different ADSs based on different risk levels.
Abstract:Accurate short-term traffic demand prediction is critical for the operation of traffic systems. Besides point estimation, the confidence interval of the prediction is also of great importance. Many models for traffic operations, such as shared bike rebalancing and taxi dispatching, take into account the uncertainty of future demand and require confidence intervals as the input. However, existing methods for confidence interval modeling rely on strict assumptions, such as unchanging traffic patterns and correct model specifications, to guarantee enough coverage. Therefore, the confidence intervals provided could be invalid, especially in a changing traffic environment. To fill this gap, we propose an efficient method, CONTINA (Conformal Traffic Intervals with Adaptation) to provide interval predictions that can adapt to external changes. By collecting the errors of interval during deployment, the method can adjust the interval in the next step by widening it if the errors are too large or shortening it otherwise. Furthermore, we theoretically prove that the coverage of the confidence intervals provided by our method converges to the target coverage level. Experiments across four real-world datasets and prediction models demonstrate that the proposed method can provide valid confidence intervals with shorter lengths. Our method can help traffic management personnel develop a more reasonable and robust operation plan in practice. And we release the code, model and dataset in \href{ https://github.com/xiannanhuang/CONTINA/}{ Github}.
Abstract:Privacy-preserving medical decision support for kidney disease requires localized deployment of large language models (LLMs) while maintaining clinical reasoning capabilities. Current solutions face three challenges: 1) Cloud-based LLMs pose data security risks; 2) Local model deployment demands technical expertise; 3) General LLMs lack mechanisms to integrate medical knowledge. Retrieval-augmented systems also struggle with medical document processing and clinical usability. We developed KidneyTalk-open, a desktop system integrating three technical components: 1) No-code deployment of state-of-the-art (SOTA) open-source LLMs (such as DeepSeek-r1, Qwen2.5) via local inference engine; 2) Medical document processing pipeline combining context-aware chunking and intelligent filtering; 3) Adaptive Retrieval and Augmentation Pipeline (AddRep) employing agents collaboration for improving the recall rate of medical documents. A graphical interface was designed to enable clinicians to manage medical documents and conduct AI-powered consultations without technical expertise. Experimental validation on 1,455 challenging nephrology exam questions demonstrates AddRep's effectiveness: achieving 29.1% accuracy (+8.1% over baseline) with intelligent knowledge integration, while maintaining robustness through 4.9% rejection rate to suppress hallucinations. Comparative case studies with the mainstream products (AnythingLLM, Chatbox, GPT4ALL) demonstrate KidneyTalk-open's superior performance in real clinical query. KidneyTalk-open represents the first no-code medical LLM system enabling secure documentation-enhanced medical Q&A on desktop. Its designs establishes a new framework for privacy-sensitive clinical AI applications. The system significantly lowers technical barriers while improving evidence traceability, enabling more medical staff or patients to use SOTA open-source LLMs conveniently.
Abstract:Although multi-agent reinforcement learning (MARL) has shown its success across diverse domains, extending its application to large-scale real-world systems still faces significant challenges. Primarily, the high complexity of real-world environments exacerbates the credit assignment problem, substantially reducing training efficiency. Moreover, the variability of agent populations in large-scale scenarios necessitates scalable decision-making mechanisms. To address these challenges, we propose a novel framework: Sequential rollout with Sequential value estimation (SrSv). This framework aims to capture agent interdependence and provide a scalable solution for cooperative MARL. Specifically, SrSv leverages the autoregressive property of the Transformer model to handle varying populations through sequential action rollout. Furthermore, to capture the interdependence of policy distributions and value functions among multiple agents, we introduce an innovative sequential value estimation methodology and integrates the value approximation into an attention-based sequential model. We evaluate SrSv on three benchmarks: Multi-Agent MuJoCo, StarCraft Multi-Agent Challenge, and DubinsCars. Experimental results demonstrate that SrSv significantly outperforms baseline methods in terms of training efficiency without compromising convergence performance. Moreover, when implemented in a large-scale DubinsCar system with 1,024 agents, our framework surpasses existing benchmarks, highlighting the excellent scalability of SrSv.
Abstract:Recently, the application of diffusion models in super-resolution tasks has become a popular research direction. Existing work is focused on fully migrating diffusion models to SR tasks. The diffusion model is proposed in the field of image generation, so in order to make the generated results diverse, the diffusion model combines random Gaussian noise and distributed sampling to increase the randomness of the model. However, the essence of super-resolution tasks requires the model to generate high-resolution images with fidelity. Excessive addition of random factors can result in the model generating detailed information that does not belong to the HR image. To address this issue, we propose a new diffusion model called Deltadiff, which uses only residuals between images for diffusion, making the entire diffusion process more stable. The experimental results show that our method surpasses state-of-the-art models and generates results with better fidelity. Our code and model are publicly available at https://github.com/continueyang/DeltaDiff
Abstract:Recent advances in face super-resolution research have utilized the Transformer architecture. This method processes the input image into a series of small patches. However, because of the strong correlation between different facial components in facial images. When it comes to super-resolution of low-resolution images, existing algorithms cannot handle the relationships between patches well, resulting in distorted facial components in the super-resolution results. To solve the problem, we propose a transformer architecture based on graph neural networks called graph vision transformer network. We treat each patch as a graph node and establish an adjacency matrix based on the information between patches. In this way, the patch only interacts between neighboring patches, further processing the relationship of facial components. Quantitative and visualization experiments have underscored the superiority of our algorithm over state-of-the-art techniques. Through detailed comparisons, we have demonstrated that our algorithm possesses more advanced super-resolution capabilities, particularly in enhancing facial components. The PyTorch code is available at https://github.com/continueyang/GVTNet
Abstract:Retrieval-augmented generation (RAG) systems face a fundamental challenge in aligning independently developed retrievers and large language models (LLMs). Existing approaches typically involve modifying either component or introducing simple intermediate modules, resulting in practical limitations and sub-optimal performance. Inspired by human search behavior -- typically involving a back-and-forth process of proposing search queries and reviewing documents, we propose C-3PO, a proxy-centric framework that facilitates communication between retrievers and LLMs through a lightweight multi-agent system. Our framework implements three specialized agents that collaboratively optimize the entire RAG pipeline without altering the retriever and LLMs. These agents work together to assess the need for retrieval, generate effective queries, and select information suitable for the LLMs. To enable effective multi-agent coordination, we develop a tree-structured rollout approach for reward credit assignment in reinforcement learning. Extensive experiments in both in-domain and out-of-distribution scenarios demonstrate that C-3PO significantly enhances RAG performance while maintaining plug-and-play flexibility and superior generalization capabilities.