Abstract:The rapid advancement of multimodal large language models (MLLMs) has unlocked new opportunities to tackle complex scientific challenges. Despite this progress, their application in addressing earth science problems, especially at the graduate level, remains underexplored. A significant barrier is the absence of benchmarks that capture the depth and contextual complexity of geoscientific reasoning. Current benchmarks often rely on synthetic datasets or simplistic figure-caption pairs, which do not adequately reflect the intricate reasoning and domain-specific insights required for real-world scientific applications. To address these gaps, we introduce MSEarth, a multimodal scientific benchmark curated from high-quality, open-access scientific publications. MSEarth encompasses the five major spheres of Earth science: atmosphere, cryosphere, hydrosphere, lithosphere, and biosphere, featuring over 7K figures with refined captions. These captions are crafted from the original figure captions and enriched with discussions and reasoning from the papers, ensuring the benchmark captures the nuanced reasoning and knowledge-intensive content essential for advanced scientific tasks. MSEarth supports a variety of tasks, including scientific figure captioning, multiple choice questions, and open-ended reasoning challenges. By bridging the gap in graduate-level benchmarks, MSEarth provides a scalable and high-fidelity resource to enhance the development and evaluation of MLLMs in scientific reasoning. The benchmark is publicly available to foster further research and innovation in this field. Resources related to this benchmark can be found at https://huggingface.co/MSEarth and https://github.com/xiangyu-mm/MSEarth.
Abstract:Advancements in Large Language Models (LLMs) drive interest in scientific applications, necessitating specialized benchmarks such as Earth science. Existing benchmarks either present a general science focus devoid of Earth science specificity or cover isolated subdomains, lacking holistic evaluation. Furthermore, current benchmarks typically neglect the assessment of LLMs' capabilities in open-ended scientific exploration. In this paper, we present a comprehensive and professional benchmark for the Earth sciences, designed to evaluate the capabilities of LLMs in scientific exploration within this domain, spanning from fundamental to advanced levels. Leveraging a corpus of 100,000 research papers, we first construct two Question Answering (QA) datasets: Earth-Iron, which offers extensive question coverage for broad assessment, and Earth-Silver, which features a higher level of difficulty to evaluate professional depth. These datasets encompass five Earth spheres, 114 disciplines, and 11 task categories, assessing foundational knowledge crucial for scientific exploration. Most notably, we introduce Earth-Gold with new metrics, a dataset comprising open-ended multi-turn dialogues specifically designed to evaluate the advanced capabilities of LLMs in scientific exploration, including methodology induction, limitation analysis, and concept proposal. Extensive experiments reveal limitations in 11 leading LLMs across different domains and tasks, highlighting considerable room for improvement in their scientific exploration capabilities. The benchmark is available on https://huggingface.co/ai-earth .
Abstract:Conventional class-guided diffusion models generally succeed in generating images with correct semantic content, but often struggle with texture details. This limitation stems from the usage of class priors, which only provide coarse and limited conditional information. To address this issue, we propose Diffusion on Diffusion (DoD), an innovative multi-stage generation framework that first extracts visual priors from previously generated samples, then provides rich guidance for the diffusion model leveraging visual priors from the early stages of diffusion sampling. Specifically, we introduce a latent embedding module that employs a compression-reconstruction approach to discard redundant detail information from the conditional samples in each stage, retaining only the semantic information for guidance. We evaluate DoD on the popular ImageNet-$256 \times 256$ dataset, reducing 7$\times$ training cost compared to SiT and DiT with even better performance in terms of the FID-50K score. Our largest model DoD-XL achieves an FID-50K score of 1.83 with only 1 million training steps, which surpasses other state-of-the-art methods without bells and whistles during inference.
Abstract:Segmenting and recognizing diverse object parts is a crucial ability in applications spanning various computer vision and robotic tasks. While significant progress has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS), i.e., segmenting objects with arbitrary text, the corresponding part-level research poses additional challenges. Firstly, part segmentation inherently involves intricate boundaries, while limited annotated data compounds the challenge. Secondly, part segmentation introduces an open granularity challenge due to the diverse and often ambiguous definitions of parts in the open world. Furthermore, the large-scale vision and language models, which play a key role in the open vocabulary setting, struggle to recognize parts as effectively as objects. To comprehensively investigate and tackle these challenges, we propose an Open-Vocabulary Part Segmentation (OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation, providing insights into analogical reasoning, open granularity and few-shot adapting abilities of models. Moreover, we analyze and adapt two prevailing paradigms of existing object-level OVSS methods for OV-PARTS. Extensive experimental analysis is conducted to inspire future research in leveraging foundational models for OV-PARTS. The code and dataset are available at https://github.com/OpenRobotLab/OV_PARTS.
Abstract:Masked AutoEncoder(MAE) has revolutionized the field of self-supervised learning with its simple yet effective masking and reconstruction strategies. However, despite achieving state-of-the-art performance across various downstream vision tasks, the underlying mechanisms that drive MAE's efficacy are less well-explored compared to the canonical contrastive learning paradigm. In this paper, we explore a new perspective to explain what truly contributes to the "rich hidden representations inside the MAE". Firstly, concerning MAE's generative pretraining pathway, with a unique encoder-decoder architecture to reconstruct images from aggressive masking, we conduct an in-depth analysis of the decoder's behaviors. We empirically find that MAE's decoder mainly learns local features with a limited receptive field, adhering to the well-known Locality Principle. Building upon this locality assumption, we propose a theoretical framework that reformulates the reconstruction-based MAE into a local region-level contrastive learning form for improved understanding. Furthermore, to substantiate the local contrastive nature of MAE, we introduce a Siamese architecture that combines the essence of MAE and contrastive learning without masking and explicit decoder, which sheds light on a unified and more flexible self-supervised learning framework.
Abstract:Video Visual Relation Detection (VidVRD) aims to detect visual relationship triplets in videos using spatial bounding boxes and temporal boundaries. Existing VidVRD methods can be broadly categorized into bottom-up and top-down paradigms, depending on their approach to classifying relations. Bottom-up methods follow a clip-based approach where they classify relations of short clip tubelet pairs and then merge them into long video relations. On the other hand, top-down methods directly classify long video tubelet pairs. While recent video-based methods utilizing video tubelets have shown promising results, we argue that the effective modeling of spatial and temporal context plays a more significant role than the choice between clip tubelets and video tubelets. This motivates us to revisit the clip-based paradigm and explore the key success factors in VidVRD. In this paper, we propose a Hierarchical Context Model (HCM) that enriches the object-based spatial context and relation-based temporal context based on clips. We demonstrate that using clip tubelets can achieve superior performance compared to most video-based methods. Additionally, using clip tubelets offers more flexibility in model designs and helps alleviate the limitations associated with video tubelets, such as the challenging long-term object tracking problem and the loss of temporal information in long-term tubelet feature compression. Extensive experiments conducted on two challenging VidVRD benchmarks validate that our HCM achieves a new state-of-the-art performance, highlighting the effectiveness of incorporating advanced spatial and temporal context modeling within the clip-based paradigm.
Abstract:Grounded Situation Recognition (GSR), i.e., recognizing the salient activity (or verb) category in an image (e.g., buying) and detecting all corresponding semantic roles (e.g., agent and goods), is an essential step towards "human-like" event understanding. Since each verb is associated with a specific set of semantic roles, all existing GSR methods resort to a two-stage framework: predicting the verb in the first stage and detecting the semantic roles in the second stage. However, there are obvious drawbacks in both stages: 1) The widely-used cross-entropy (XE) loss for object recognition is insufficient in verb classification due to the large intra-class variation and high inter-class similarity among daily activities. 2) All semantic roles are detected in an autoregressive manner, which fails to model the complex semantic relations between different roles. To this end, we propose a novel SituFormer for GSR which consists of a Coarse-to-Fine Verb Model (CFVM) and a Transformer-based Noun Model (TNM). CFVM is a two-step verb prediction model: a coarse-grained model trained with XE loss first proposes a set of verb candidates, and then a fine-grained model trained with triplet loss re-ranks these candidates with enhanced verb features (not only separable but also discriminative). TNM is a transformer-based semantic role detection model, which detects all roles parallelly. Owing to the global relation modeling ability and flexibility of the transformer decoder, TNM can fully explore the statistical dependency of the roles. Extensive validations on the challenging SWiG benchmark show that SituFormer achieves a new state-of-the-art performance with significant gains under various metrics. Code is available at https://github.com/kellyiss/SituFormer.
Abstract:We present MMOCR-an open-source toolbox which provides a comprehensive pipeline for text detection and recognition, as well as their downstream tasks such as named entity recognition and key information extraction. MMOCR implements 14 state-of-the-art algorithms, which is significantly more than all the existing open-source OCR projects we are aware of to date. To facilitate future research and industrial applications of text recognition-related problems, we also provide a large number of trained models and detailed benchmarks to give insights into the performance of text detection, recognition and understanding. MMOCR is publicly released at https://github.com/open-mmlab/mmocr.
Abstract:Transformers with powerful global relation modeling abilities have been introduced to fundamental computer vision tasks recently. As a typical example, the Vision Transformer (ViT) directly applies a pure transformer architecture on image classification, by simply splitting images into tokens with a fixed length, and employing transformers to learn relations between these tokens. However, such naive tokenization could destruct object structures, assign grids to uninterested regions such as background, and introduce interference signals. To mitigate the above issues, in this paper, we propose an iterative and progressive sampling strategy to locate discriminative regions. At each iteration, embeddings of the current sampling step are fed into a transformer encoder layer, and a group of sampling offsets is predicted to update the sampling locations for the next step. The progressive sampling is differentiable. When combined with the Vision Transformer, the obtained PS-ViT network can adaptively learn where to look. The proposed PS-ViT is both effective and efficient. When trained from scratch on ImageNet, PS-ViT performs 3.8% higher than the vanilla ViT in terms of top-1 accuracy with about $4\times$ fewer parameters and $10\times$ fewer FLOPs. Code is available at https://github.com/yuexy/PS-ViT.
Abstract:Key information extraction from document images is of paramount importance in office automation. Conventional template matching based approaches fail to generalize well to document images of unseen templates, and are not robust against text recognition errors. In this paper, we propose an end-to-end Spatial Dual-Modality Graph Reasoning method (SDMG-R) to extract key information from unstructured document images. We model document images as dual-modality graphs, nodes of which encode both the visual and textual features of detected text regions, and edges of which represent the spatial relations between neighboring text regions. The key information extraction is solved by iteratively propagating messages along graph edges and reasoning the categories of graph nodes. In order to roundly evaluate our proposed method as well as boost the future research, we release a new dataset named WildReceipt, which is collected and annotated tailored for the evaluation of key information extraction from document images of unseen templates in the wild. It contains 25 key information categories, a total of about 69000 text boxes, and is about 2 times larger than the existing public datasets. Extensive experiments validate that all information including visual features, textual features and spatial relations can benefit key information extraction. It has been shown that SDMG-R can effectively extract key information from document images of unseen templates, and obtain new state-of-the-art results on the recent popular benchmark SROIE and our WildReceipt. Our code and dataset will be publicly released.