Abstract:High-quality 3D texture generation remains a fundamental challenge due to the view-inconsistency inherent in current mainstream multi-view diffusion pipelines. Existing representations either rely on UV maps, which suffer from distortion during unwrapping, or point-based methods, which tightly couple texture fidelity to geometric density that limits high-resolution texture generation. To address these limitations, we introduce TexSpot, a diffusion-based texture enhancement framework. At its core is Texlet, a novel 3D texture representation that merges the geometric expressiveness of point-based 3D textures with the compactness of UV-based representation. Each Texlet latent vector encodes a local texture patch via a 2D encoder and is further aggregated using a 3D encoder to incorporate global shape context. A cascaded 3D-to-2D decoder reconstructs high-quality texture patches, enabling the Texlet space learning. Leveraging this representation, we train a diffusion transformer conditioned on Texlets to refine and enhance textures produced by multi-view diffusion methods. Extensive experiments demonstrate that TexSpot significantly improves visual fidelity, geometric consistency, and robustness over existing state-of-the-art 3D texture generation and enhancement approaches. Project page: https://texlet-arch.github.io/TexSpot-page.
Abstract:As the development of Large Models (LMs) progresses rapidly, their safety is also a priority. In current Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) safety workflow, evaluation, diagnosis, and alignment are often handled by separate tools. Specifically, safety evaluation can only locate external behavioral risks but cannot figure out internal root causes. Meanwhile, safety diagnosis often drifts from concrete risk scenarios and remains at the explainable level. In this way, safety alignment lack dedicated explanations of changes in internal mechanisms, potentially degrading general capabilities. To systematically address these issues, we propose an open-source project, namely DeepSight, to practice a new safety evaluation-diagnosis integrated paradigm. DeepSight is low-cost, reproducible, efficient, and highly scalable large-scale model safety evaluation project consisting of a evaluation toolkit DeepSafe and a diagnosis toolkit DeepScan. By unifying task and data protocols, we build a connection between the two stages and transform safety evaluation from black-box to white-box insight. Besides, DeepSight is the first open source toolkit that support the frontier AI risk evaluation and joint safety evaluation and diagnosis.
Abstract:Large language models (LLMs) have advanced the development of personalized learning in education. However, their inherent generation mechanisms often produce homogeneous responses to identical prompts. This one-size-fits-all mechanism overlooks the substantial heterogeneity in students cognitive and psychological, thereby posing potential safety risks to vulnerable groups. Existing safety evaluations primarily rely on context-independent metrics such as factual accuracy, bias, or toxicity, which fail to capture the divergent harms that the same response might cause across different student attributes. To address this gap, we propose the concept of Student-Tailored Personalized Safety and construct CASTLE based on educational theories. This benchmark covers 15 educational safety risks and 14 student attributes, comprising 92,908 bilingual scenarios. We further design three evaluation metrics: Risk Sensitivity, measuring the model ability to detect risks; Emotional Empathy, evaluating the model capacity to recognize student states; and Student Alignment, assessing the match between model responses and student attributes. Experiments on 18 SOTA LLMs demonstrate that CASTLE poses a significant challenge: all models scored below an average safety rating of 2.3 out of 5, indicating substantial deficiencies in personalized safety assurance.
Abstract:Beyond parallel generation and global context modeling, current masked diffusion large language models (dLLMs) suffer from a fundamental limitation: they require a predefined, fixed generation length, which lacks flexibility and forces an inevitable trade-off between output quality and computational efficiency. To address this, we study the denoising dynamics and find that the implicit density ($ρ$) of end-of-sequence ($\texttt{EOS}$) tokens serves as a reliable signal of generation sufficiency. In particular, the evolving implicit $\texttt{EOS}$ density during denoising reveals whether the current masked space is excessive or insufficient, thereby guiding the adjustment direction for generation length. Building on this insight, we propose $\textbf{$ρ$-$\texttt{EOS}$}$, a training-free, single-stage strategy that enables bidirectional variable-length generation for masked dLLMs. Unlike prior two-stage approaches--which require separate length adjustment and iterative mask insertion phases while supporting only unidirectional expansion--$\textbf{$ρ$-$\texttt{EOS}$}$ achieves bidirectional length adjustment within a unified denoising process by continuously estimating the implicit $\texttt{EOS}$ density: excessively high density triggers $\texttt{MASK}$ token contraction, while insufficient density induces expansion. Extensive experiments on mathematics and code benchmarks demonstrate that $\textbf{$ρ$-$\texttt{EOS}$}$ achieves comparable performance while substantially improving inference efficiency and token utilization.
Abstract:Large language model-powered multi-agent systems have emerged as powerful tools for simulating complex human-like systems. The interactions within these systems often lead to extreme events whose origins remain obscured by the black box of emergence. Interpreting these events is critical for system safety. This paper proposes the first framework for explaining emergent extreme events in multi-agent systems, aiming to answer three fundamental questions: When does the event originate? Who drives it? And what behaviors contribute to it? Specifically, we adapt the Shapley value to faithfully attribute the occurrence of extreme events to each action taken by agents at different time steps, i.e., assigning an attribution score to the action to measure its influence on the event. We then aggregate the attribution scores along the dimensions of time, agent, and behavior to quantify the risk contribution of each dimension. Finally, we design a set of metrics based on these contribution scores to characterize the features of extreme events. Experiments across diverse multi-agent system scenarios (economic, financial, and social) demonstrate the effectiveness of our framework and provide general insights into the emergence of extreme phenomena.
Abstract:The dual offensive and defensive utility of Large Language Models (LLMs) highlights a critical gap in AI security: the lack of unified frameworks for dynamic, iterative adversarial adaptation hardening. To bridge this gap, we propose the Red Team vs. Blue Team (RvB) framework, formulated as a training-free, sequential, imperfect-information game. In this process, the Red Team exposes vulnerabilities, driving the Blue Team to learning effective solutions without parameter updates. We validate our framework across two challenging domains: dynamic code hardening against CVEs and guardrail optimization against jailbreaks. Our empirical results show that this interaction compels the Blue Team to learn fundamental defensive principles, leading to robust remediations that are not merely overfitted to specific exploits. RvB achieves Defense Success Rates of 90\% and 45\% across the respective tasks while maintaining near 0\% False Positive Rates, significantly surpassing baselines. This work establishes the iterative adversarial interaction framework as a practical paradigm that automates the continuous hardening of AI systems.
Abstract:The rise of AI agents introduces complex safety and security challenges arising from autonomous tool use and environmental interactions. Current guardrail models lack agentic risk awareness and transparency in risk diagnosis. To introduce an agentic guardrail that covers complex and numerous risky behaviors, we first propose a unified three-dimensional taxonomy that orthogonally categorizes agentic risks by their source (where), failure mode (how), and consequence (what). Guided by this structured and hierarchical taxonomy, we introduce a new fine-grained agentic safety benchmark (ATBench) and a Diagnostic Guardrail framework for agent safety and security (AgentDoG). AgentDoG provides fine-grained and contextual monitoring across agent trajectories. More Crucially, AgentDoG can diagnose the root causes of unsafe actions and seemingly safe but unreasonable actions, offering provenance and transparency beyond binary labels to facilitate effective agent alignment. AgentDoG variants are available in three sizes (4B, 7B, and 8B parameters) across Qwen and Llama model families. Extensive experimental results demonstrate that AgentDoG achieves state-of-the-art performance in agentic safety moderation in diverse and complex interactive scenarios. All models and datasets are openly released.
Abstract:Large Language Model (LLM)-based agents are widely used in real-world applications such as customer service, web navigation, and software engineering. As these systems become more autonomous and are deployed at scale, understanding why an agent takes a particular action becomes increasingly important for accountability and governance. However, existing research predominantly focuses on \textit{failure attribution} to localize explicit errors in unsuccessful trajectories, which is insufficient for explaining the reasoning behind agent behaviors. To bridge this gap, we propose a novel framework for \textbf{general agentic attribution}, designed to identify the internal factors driving agent actions regardless of the task outcome. Our framework operates hierarchically to manage the complexity of agent interactions. Specifically, at the \textit{component level}, we employ temporal likelihood dynamics to identify critical interaction steps; then at the \textit{sentence level}, we refine this localization using perturbation-based analysis to isolate the specific textual evidence. We validate our framework across a diverse suite of agentic scenarios, including standard tool use and subtle reliability risks like memory-induced bias. Experimental results demonstrate that the proposed framework reliably pinpoints pivotal historical events and sentences behind the agent behavior, offering a critical step toward safer and more accountable agentic systems.
Abstract:The rapid advancement of Large Language Model (LLM)-based Multi-Agent Systems (MAS) has introduced significant security vulnerabilities, where malicious influence can propagate virally through inter-agent communication. Conventional safeguards often rely on a binary paradigm that strictly distinguishes between benign and attack agents, failing to account for infected agents i.e., benign entities converted by attack agents. In this paper, we propose Infection-Aware Guard, INFA-Guard, a novel defense framework that explicitly identifies and addresses infected agents as a distinct threat category. By leveraging infection-aware detection and topological constraints, INFA-Guard accurately localizes attack sources and infected ranges. During remediation, INFA-Guard replaces attackers and rehabilitates infected ones, avoiding malicious propagation while preserving topological integrity. Extensive experiments demonstrate that INFA-Guard achieves state-of-the-art performance, reducing the Attack Success Rate (ASR) by an average of 33%, while exhibiting cross-model robustness, superior topological generalization, and high cost-effectiveness.
Abstract:Recent years have witnessed increasing interest in extending large language models into agentic systems. While the effectiveness of agents has continued to improve, efficiency, which is crucial for real-world deployment, has often been overlooked. This paper therefore investigates efficiency from three core components of agents: memory, tool learning, and planning, considering costs such as latency, tokens, steps, etc. Aimed at conducting comprehensive research addressing the efficiency of the agentic system itself, we review a broad range of recent approaches that differ in implementation yet frequently converge on shared high-level principles including but not limited to bounding context via compression and management, designing reinforcement learning rewards to minimize tool invocation, and employing controlled search mechanisms to enhance efficiency, which we discuss in detail. Accordingly, we characterize efficiency in two complementary ways: comparing effectiveness under a fixed cost budget, and comparing cost at a comparable level of effectiveness. This trade-off can also be viewed through the Pareto frontier between effectiveness and cost. From this perspective, we also examine efficiency oriented benchmarks by summarizing evaluation protocols for these components and consolidating commonly reported efficiency metrics from both benchmark and methodological studies. Moreover, we discuss the key challenges and future directions, with the goal of providing promising insights.