The field of generative AI has a transformative impact on various areas, including virtual reality, autonomous driving, the metaverse, gaming, and robotics. Among these applications, 3D object generation techniques are of utmost importance. This technique has unlocked fresh avenues in the realm of creating, customizing, and exploring 3D objects. However, the quality and diversity of existing 3D object generation methods are constrained by the inadequacies of existing 3D object datasets, including issues related to text quality, the incompleteness of multi-modal data representation encompassing 2D rendered images and 3D assets, as well as the size of the dataset. In order to resolve these issues, we present UniG3D, a unified 3D object generation dataset constructed by employing a universal data transformation pipeline on Objaverse and ShapeNet datasets. This pipeline converts each raw 3D model into comprehensive multi-modal data representation <text, image, point cloud, mesh> by employing rendering engines and multi-modal models. These modules ensure the richness of textual information and the comprehensiveness of data representation. Remarkably, the universality of our pipeline refers to its ability to be applied to any 3D dataset, as it only requires raw 3D data. The selection of data sources for our dataset is based on their scale and quality. Subsequently, we assess the effectiveness of our dataset by employing Point-E and SDFusion, two widely recognized methods for object generation, tailored to the prevalent 3D representations of point clouds and signed distance functions. Our dataset is available at: https://unig3d.github.io.
Large language models have become a potential pathway toward achieving artificial general intelligence. Recent works on multi-modal large language models have demonstrated their effectiveness in handling visual modalities. In this work, we extend the research of MLLMs to point clouds and present the LAMM-Dataset and LAMM-Benchmark for 2D image and 3D point cloud understanding. We also establish an extensible framework to facilitate the extension of MLLMs to additional modalities. Our main contribution is three-fold: 1) We present the LAMM-Dataset and LAMM-Benchmark, which cover almost all high-level vision tasks for 2D and 3D vision. Extensive experiments validate the effectiveness of our dataset and benchmark. 2) We demonstrate the detailed methods of constructing instruction-tuning datasets and benchmarks for MLLMs, which will enable future research on MLLMs to scale up and extend to other domains, tasks, and modalities faster. 3) We provide a primary but potential MLLM training framework optimized for modalities' extension. We also provide baseline models, comprehensive experimental observations, and analysis to accelerate future research. Codes and datasets are now available at https://github.com/OpenLAMM/LAMM.
With the development of deep learning, the field of face anti-spoofing (FAS) has witnessed great progress. FAS is usually considered a classification problem, where each class is assumed to contain a single cluster optimized by softmax loss. In practical deployment, one class can contain several local clusters, and a single-center is insufficient to capture the inherent structure of the FAS data. However, few approaches consider large distribution discrepancies in the field of FAS. In this work, we propose a unified framework called Latent Distribution Adjusting (LDA) with properties of latent, discriminative, adaptive, generic to improve the robustness of the FAS model by adjusting complex data distribution with multiple prototypes. 1) Latent. LDA attempts to model the data of each class as a Gaussian mixture distribution, and acquire a flexible number of centers for each class in the last fully connected layer implicitly. 2) Discriminative. To enhance the intra-class compactness and inter-class discrepancy, we propose a margin-based loss for providing distribution constrains for prototype learning. 3) Adaptive. To make LDA more efficient and decrease redundant parameters, we propose Adaptive Prototype Selection (APS) by selecting the appropriate number of centers adaptively according to different distributions. 4) Generic. Furthermore, LDA can adapt to unseen distribution by utilizing very few training data without re-training. Extensive experiments demonstrate that our framework can 1) make the final representation space both intra-class compact and inter-class separable, 2) outperform the state-of-the-art methods on multiple standard FAS benchmarks.
This paper shows that Masking the Deep hierarchical features is an efficient self-supervised method, denoted as MaskDeep. MaskDeep treats each patch in the representation space as an independent instance. We mask part of patches in the representation space and then utilize sparse visible patches to reconstruct high semantic image representation. The intuition of MaskDeep lies in the fact that models can reason from sparse visible patches semantic to the global semantic of the image. We further propose three designs in our framework: 1) a Hierarchical Deep-Masking module to concern the hierarchical property of patch representations, 2) a multi-group strategy to improve the efficiency without any extra computing consumption of the encoder and 3) a multi-target strategy to provide more description of the global semantic. Our MaskDeep brings decent improvements. Trained on ResNet50 with 200 epochs, MaskDeep achieves state-of-the-art results of 71.2% Top1 accuracy linear classification on ImageNet. On COCO object detection tasks, MaskDeep outperforms the self-supervised method SoCo, which specifically designed for object detection. When trained with 100 epochs, MaskDeep achieves 69.6% Top1 accuracy, which surpasses current methods trained with 200 epochs, such as HCSC, by 0.4% .
Recent self-supervised methods are mainly designed for representation learning with the base model, e.g., ResNets or ViTs. They cannot be easily transferred to DETR, with task-specific Transformer modules. In this work, we present Siamese DETR, a Siamese self-supervised pretraining approach for the Transformer architecture in DETR. We consider learning view-invariant and detection-oriented representations simultaneously through two complementary tasks, i.e., localization and discrimination, in a novel multi-view learning framework. Two self-supervised pretext tasks are designed: (i) Multi-View Region Detection aims at learning to localize regions-of-interest between augmented views of the input, and (ii) Multi-View Semantic Discrimination attempts to improve object-level discrimination for each region. The proposed Siamese DETR achieves state-of-the-art transfer performance on COCO and PASCAL VOC detection using different DETR variants in all setups. Code is available at https://github.com/Zx55/SiameseDETR.
Recently, perception task based on Bird's-Eye View (BEV) representation has drawn more and more attention, and BEV representation is promising as the foundation for next-generation Autonomous Vehicle (AV) perception. However, most existing BEV solutions either require considerable resources to execute on-vehicle inference or suffer from modest performance. This paper proposes a simple yet effective framework, termed Fast-BEV , which is capable of performing faster BEV perception on the on-vehicle chips. Towards this goal, we first empirically find that the BEV representation can be sufficiently powerful without expensive transformer based transformation nor depth representation. Our Fast-BEV consists of five parts, We novelly propose (1) a lightweight deployment-friendly view transformation which fast transfers 2D image feature to 3D voxel space, (2) an multi-scale image encoder which leverages multi-scale information for better performance, (3) an efficient BEV encoder which is particularly designed to speed up on-vehicle inference. We further introduce (4) a strong data augmentation strategy for both image and BEV space to avoid over-fitting, (5) a multi-frame feature fusion mechanism to leverage the temporal information. Through experiments, on 2080Ti platform, our R50 model can run 52.6 FPS with 47.3% NDS on the nuScenes validation set, exceeding the 41.3 FPS and 47.5% NDS of the BEVDepth-R50 model and 30.2 FPS and 45.7% NDS of the BEVDet4D-R50 model. Our largest model (R101@900x1600) establishes a competitive 53.5% NDS on the nuScenes validation set. We further develop a benchmark with considerable accuracy and efficiency on current popular on-vehicle chips. The code is released at: https://github.com/Sense-GVT/Fast-BEV.
Recently, the pure camera-based Bird's-Eye-View (BEV) perception removes expensive Lidar sensors, making it a feasible solution for economical autonomous driving. However, most existing BEV solutions either suffer from modest performance or require considerable resources to execute on-vehicle inference. This paper proposes a simple yet effective framework, termed Fast-BEV, which is capable of performing real-time BEV perception on the on-vehicle chips. Towards this goal, we first empirically find that the BEV representation can be sufficiently powerful without expensive view transformation or depth representation. Starting from M2BEV baseline, we further introduce (1) a strong data augmentation strategy for both image and BEV space to avoid over-fitting (2) a multi-frame feature fusion mechanism to leverage the temporal information (3) an optimized deployment-friendly view transformation to speed up the inference. Through experiments, we show Fast-BEV model family achieves considerable accuracy and efficiency on edge. In particular, our M1 model (R18@256x704) can run over 50FPS on the Tesla T4 platform, with 47.0% NDS on the nuScenes validation set. Our largest model (R101@900x1600) establishes a new state-of-the-art 53.5% NDS on the nuScenes validation set. The code is released at: https://github.com/Sense-GVT/Fast-BEV.
Human-Object Interaction (HOI) detection aims to learn how human interacts with surrounding objects. Previous HOI detection frameworks simultaneously detect human, objects and their corresponding interactions by using a predictor. Using only one shared predictor cannot differentiate the attentive field of instance-level prediction and relation-level prediction. To solve this problem, we propose a new transformer-based method named Parallel Reasoning Network(PR-Net), which constructs two independent predictors for instance-level localization and relation-level understanding. The former predictor concentrates on instance-level localization by perceiving instances' extremity regions. The latter broadens the scope of relation region to reach a better relation-level semantic understanding. Extensive experiments and analysis on HICO-DET benchmark exhibit that our PR-Net effectively alleviated this problem. Our PR-Net has achieved competitive results on HICO-DET and V-COCO benchmarks.
Existing approaches for vision-and-language navigation (VLN) are mainly based on cross-modal reasoning over discrete views. However, this scheme may hamper an agent's spatial and numerical reasoning because of incomplete objects within a single view and duplicate observations across views. A potential solution is mapping discrete views into a unified birds's-eye view, which can aggregate partial and duplicate observations. Existing metric maps could achieve this goal, but they suffer from less expressive semantics (e.g. usually predefined labels) and limited map size, which weakens an agent's language grounding and long-term planning ability. Inspired by the robotics community, we introduce hybrid topo-metric maps into VLN, where a topological map is used for long-term planning and a metric map for short-term reasoning. Beyond mapping with more expressive deep features, we further design a pre-training framework via the hybrid map to learn language-informed map representations, which enhances cross-modal grounding and facilitates the final language-guided navigation goal. Extensive experiments demonstrate the effectiveness of the map-based route for VLN, and the proposed method sets the new state-of-the-art on three VLN benchmarks.