Peking University
Abstract:Autoregressive image generation aims to predict the next token based on previous ones. However, existing image tokenizers encode tokens with bidirectional dependencies during the compression process, which hinders the effective modeling by autoregressive models. In this paper, we propose a novel Aligned Tokenizer (AliTok), which utilizes a causal decoder to establish unidirectional dependencies among encoded tokens, thereby aligning the token modeling approach between the tokenizer and autoregressive model. Furthermore, by incorporating prefix tokens and employing two-stage tokenizer training to enhance reconstruction consistency, AliTok achieves great reconstruction performance while being generation-friendly. On ImageNet-256 benchmark, using a standard decoder-only autoregressive model as the generator with only 177M parameters, AliTok achieves a gFID score of 1.50 and an IS of 305.9. When the parameter count is increased to 662M, AliTok achieves a gFID score of 1.35, surpassing the state-of-the-art diffusion method with 10x faster sampling speed. The code and weights are available at https://github.com/ali-vilab/alitok.
Abstract:Domain-wall dynamics in ferroelectric materials are strongly position-dependent since each polar interface is locked into a unique local microstructure. This necessitates spatially resolved studies of the wall-pinning using scanning-probe microscopy techniques. The pinning centers and preexisting domain walls are usually sparse within image plane, precluding the use of dense hyperspectral imaging modes and requiring time-consuming human experimentation. Here, a large area epitaxial PbTiO$_3$ film on cubic KTaO$_3$ were investigated to quantify the electric field driven dynamics of the polar-strain domain structures using ML-controlled automated Piezoresponse Force Microscopy. Analysis of 1500 switching events reveals that domain wall displacement depends not only on field parameters but also on the local ferroelectric-ferroelastic configuration. For example, twin boundaries in polydomains regions like a$_1^-$/$c^+$ $\parallel$ a$_2^-$/$c^-$ stay pinned up to a certain level of bias magnitude and change only marginally as the bias increases from 20V to 30V, whereas single variant boundaries like a$_2^+$/$c^+$ $\parallel$ a$_2^-$/$c^-$ stack are already activated at 20V. These statistics on the possible ferroelectric and ferroelastic wall orientations, together with the automated, high-throughput AFM workflow, can be distilled into a predictive map that links domain configurations to pulse parameters. This microstructure-specific rule set forms the foundation for designing ferroelectric memories.
Abstract:Exceptional behavior tests (EBTs) are crucial in software development for verifying that code correctly handles unwanted events and throws appropriate exceptions. However, prior research has shown that developers often prioritize testing "happy paths", e.g., paths without unwanted events over exceptional scenarios. We present exLong, a framework that automatically generates EBTs to address this gap. exLong leverages a large language model (LLM) fine-tuned from CodeLlama and incorporates reasoning about exception-throwing traces, conditional expressions that guard throw statements, and non-exceptional behavior tests that execute similar traces. Our demonstration video illustrates how exLong can effectively assist developers in creating comprehensive EBTs for their project (available at https://youtu.be/Jro8kMgplZk).
Abstract:Leveraging the diffusion transformer (DiT) architecture, models like Sora, CogVideoX and Wan have achieved remarkable progress in text-to-video, image-to-video, and video editing tasks. Despite these advances, diffusion-based video generation remains computationally intensive, especially for high-resolution, long-duration videos. Prior work accelerates its inference by skipping computation, usually at the cost of severe quality degradation. In this paper, we propose SRDiffusion, a novel framework that leverages collaboration between large and small models to reduce inference cost. The large model handles high-noise steps to ensure semantic and motion fidelity (Sketching), while the smaller model refines visual details in low-noise steps (Rendering). Experimental results demonstrate that our method outperforms existing approaches, over 3$\times$ speedup for Wan with nearly no quality loss for VBench, and 2$\times$ speedup for CogVideoX. Our method is introduced as a new direction orthogonal to existing acceleration strategies, offering a practical solution for scalable video generation.
Abstract:Emotional Support Conversations (ESC) are crucial for providing empathy, validation, and actionable guidance to individuals in distress. However, existing definitions of the ESC task oversimplify the structure of supportive responses, typically modelling them as single strategy-utterance pairs. Through a detailed corpus analysis of the ESConv dataset, we identify a common yet previously overlooked phenomenon: emotional supporters often employ multiple strategies consecutively within a single turn. We formally redefine the ESC task to account for this, proposing a revised formulation that requires generating the full sequence of strategy-utterance pairs given a dialogue history. To facilitate this refined task, we introduce several modelling approaches, including supervised deep learning models and large language models. Our experiments show that, under this redefined task, state-of-the-art LLMs outperform both supervised models and human supporters. Notably, contrary to some earlier findings, we observe that LLMs frequently ask questions and provide suggestions, demonstrating more holistic support capabilities.
Abstract:Survival analysis, which estimates the probability of event occurrence over time from censored data, is fundamental in numerous real-world applications, particularly in high-stakes domains such as healthcare and risk assessment. Despite advances in numerous survival models, quantifying the uncertainty of predictions from these models remains underexplored and challenging. The lack of reliable uncertainty quantification limits the interpretability and trustworthiness of survival models, hindering their adoption in clinical decision-making and other sensitive applications. To bridge this gap, in this work, we introduce SurvUnc, a novel meta-model based framework for post-hoc uncertainty quantification for survival models. SurvUnc introduces an anchor-based learning strategy that integrates concordance knowledge into meta-model optimization, leveraging pairwise ranking performance to estimate uncertainty effectively. Notably, our framework is model-agnostic, ensuring compatibility with any survival model without requiring modifications to its architecture or access to its internal parameters. Especially, we design a comprehensive evaluation pipeline tailored to this critical yet overlooked problem. Through extensive experiments on four publicly available benchmarking datasets and five representative survival models, we demonstrate the superiority of SurvUnc across multiple evaluation scenarios, including selective prediction, misprediction detection, and out-of-domain detection. Our results highlight the effectiveness of SurvUnc in enhancing model interpretability and reliability, paving the way for more trustworthy survival predictions in real-world applications.
Abstract:We introduce Land-MoE, a novel approach for multispectral land cover classification (MLCC). Spectral shift, which emerges from disparities in sensors and geospatial conditions, poses a significant challenge in this domain. Existing methods predominantly rely on domain adaptation and generalization strategies, often utilizing small-scale models that exhibit limited performance. In contrast, Land-MoE addresses these issues by hierarchically inserting a Frequency-aware Mixture of Low-rank Token Experts, to fine-tune Vision Foundation Models (VFMs) in a parameter-efficient manner. Specifically, Land-MoE comprises two key modules: the mixture of low-rank token experts (MoLTE) and frequency-aware filters (FAF). MoLTE leverages rank-differentiated tokens to generate diverse feature adjustments for individual instances within multispectral images. By dynamically combining learnable low-rank token experts of varying ranks, it enhances the robustness against spectral shifts. Meanwhile, FAF conducts frequency-domain modulation on the refined features. This process enables the model to effectively capture frequency band information that is strongly correlated with semantic essence, while simultaneously suppressing frequency noise irrelevant to the task. Comprehensive experiments on MLCC tasks involving cross-sensor and cross-geospatial setups demonstrate that Land-MoE outperforms existing methods by a large margin. Additionally, the proposed approach has also achieved state-of-the-art performance in domain generalization semantic segmentation tasks of RGB remote sensing images.
Abstract:Depth estimation plays a great potential role in obstacle avoidance and navigation for further Mars exploration missions. Compared to traditional stereo matching, learning-based stereo depth estimation provides a data-driven approach to infer dense and precise depth maps from stereo image pairs. However, these methods always suffer performance degradation in environments with sparse textures and lacking geometric constraints, such as the unstructured terrain of Mars. To address these challenges, we propose M3Depth, a depth estimation model tailored for Mars rovers. Considering the sparse and smooth texture of Martian terrain, which is primarily composed of low-frequency features, our model incorporates a convolutional kernel based on wavelet transform that effectively captures low-frequency response and expands the receptive field. Additionally, we introduce a consistency loss that explicitly models the complementary relationship between depth map and surface normal map, utilizing the surface normal as a geometric constraint to enhance the accuracy of depth estimation. Besides, a pixel-wise refinement module with mutual boosting mechanism is designed to iteratively refine both depth and surface normal predictions. Experimental results on synthetic Mars datasets with depth annotations show that M3Depth achieves a significant 16% improvement in depth estimation accuracy compared to other state-of-the-art methods in depth estimation. Furthermore, the model demonstrates strong applicability in real-world Martian scenarios, offering a promising solution for future Mars exploration missions.
Abstract:The automatic diagnosis of chest diseases is a popular and challenging task. Most current methods are based on convolutional neural networks (CNNs), which focus on local features while neglecting global features. Recently, self-attention mechanisms have been introduced into the field of computer vision, demonstrating superior performance. Therefore, this paper proposes an effective model, CheX-DS, for classifying long-tail multi-label data in the medical field of chest X-rays. The model is based on the excellent CNN model DenseNet for medical imaging and the newly popular Swin Transformer model, utilizing ensemble deep learning techniques to combine the two models and leverage the advantages of both CNNs and Transformers. The loss function of CheX-DS combines weighted binary cross-entropy loss with asymmetric loss, effectively addressing the issue of data imbalance. The NIH ChestX-ray14 dataset is selected to evaluate the model's effectiveness. The model outperforms previous studies with an excellent average AUC score of 83.76\%, demonstrating its superior performance.
Abstract:Model Context Protocol (MCP) standardizes interface mapping for large language models (LLMs) to access external data and tools, which revolutionizes the paradigm of tool selection and facilitates the rapid expansion of the LLM agent tool ecosystem. However, as the MCP is increasingly adopted, third-party customized versions of the MCP server expose potential security vulnerabilities. In this paper, we first introduce a novel security threat, which we term the MCP Preference Manipulation Attack (MPMA). An attacker deploys a customized MCP server to manipulate LLMs, causing them to prioritize it over other competing MCP servers. This can result in economic benefits for attackers, such as revenue from paid MCP services or advertising income generated from free servers. To achieve MPMA, we first design a Direct Preference Manipulation Attack ($\mathtt{DPMA}$) that achieves significant effectiveness by inserting the manipulative word and phrases into the tool name and description. However, such a direct modification is obvious to users and lacks stealthiness. To address these limitations, we further propose Genetic-based Advertising Preference Manipulation Attack ($\mathtt{GAPMA}$). $\mathtt{GAPMA}$ employs four commonly used strategies to initialize descriptions and integrates a Genetic Algorithm (GA) to enhance stealthiness. The experiment results demonstrate that $\mathtt{GAPMA}$ balances high effectiveness and stealthiness. Our study reveals a critical vulnerability of the MCP in open ecosystems, highlighting an urgent need for robust defense mechanisms to ensure the fairness of the MCP ecosystem.