Alert button
Picture for Wengang Zhou

Wengang Zhou

Alert button

DanZero+: Dominating the GuanDan Game through Reinforcement Learning

Dec 05, 2023
Youpeng Zhao, Yudong Lu, Jian Zhao, Wengang Zhou, Houqiang Li

The utilization of artificial intelligence (AI) in card games has been a well-explored subject within AI research for an extensive period. Recent advancements have propelled AI programs to showcase expertise in intricate card games such as Mahjong, DouDizhu, and Texas Hold'em. In this work, we aim to develop an AI program for an exceptionally complex and popular card game called GuanDan. This game involves four players engaging in both competitive and cooperative play throughout a long process to upgrade their level, posing great challenges for AI due to its expansive state and action space, long episode length, and complex rules. Employing reinforcement learning techniques, specifically Deep Monte Carlo (DMC), and a distributed training framework, we first put forward an AI program named DanZero for this game. Evaluation against baseline AI programs based on heuristic rules highlights the outstanding performance of our bot. Besides, in order to further enhance the AI's capabilities, we apply policy-based reinforcement learning algorithm to GuanDan. To address the challenges arising from the huge action space, which will significantly impact the performance of policy-based algorithms, we adopt the pre-trained model to facilitate the training process and the achieved AI program manages to achieve a superior performance.

* arXiv admin note: text overlap with arXiv:2210.17087 
Viaarxiv icon

DocPedia: Unleashing the Power of Large Multimodal Model in the Frequency Domain for Versatile Document Understanding

Nov 30, 2023
Hao Feng, Qi Liu, Hao Liu, Wengang Zhou, Houqiang Li, Can Huang

This work presents DocPedia, a novel large multimodal model (LMM) for versatile OCR-free document understanding, capable of parsing images up to 2,560$\times$2,560 resolution. Unlike existing work either struggle with high-resolution documents or give up the large language model thus vision or language ability constrained, our DocPedia directly processes visual input in the frequency domain rather than the pixel space. The unique characteristic enables DocPedia to capture a greater amount of visual and textual information using a limited number of visual tokens. To consistently enhance both perception and comprehension abilities of our model, we develop a dual-stage training strategy and enrich instructions/annotations of all training tasks covering multiple document types. Extensive quantitative and qualitative experiments conducted on various publicly available benchmarks confirm the mutual benefits of jointly learning perception and comprehension tasks. The results provide further evidence of the effectiveness and superior performance of our DocPedia over other methods.

Viaarxiv icon

Towards Improving Document Understanding: An Exploration on Text-Grounding via MLLMs

Nov 22, 2023
Yonghui Wang, Wengang Zhou, Hao Feng, Keyi Zhou, Houqiang Li

In the field of document understanding, significant advances have been made in the fine-tuning of Multimodal Large Language Models (MLLMs) with instruction-following data. Nevertheless, the potential of text-grounding capability within text-rich scenarios remains underexplored. In this paper, we present a text-grounding document understanding model, termed TGDoc, which addresses this deficiency by enhancing MLLMs with the ability to discern the spatial positioning of text within images. Empirical evidence suggests that text-grounding improves the model's interpretation of textual content, thereby elevating its proficiency in comprehending text-rich images. Specifically, we compile a dataset containing 99K PowerPoint presentations sourced from the internet. We formulate instruction tuning tasks including text detection, recognition, and spotting to facilitate the cohesive alignment between the visual encoder and large language model. Moreover, we curate a collection of text-rich images and prompt the text-only GPT-4 to generate 12K high-quality conversations, featuring textual locations within text-rich scenarios. By integrating text location data into the instructions, TGDoc is adept at discerning text locations during the visual question process. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple text-rich benchmarks, validating the effectiveness of our method.

Viaarxiv icon

Progressive Recurrent Network for Shadow Removal

Nov 01, 2023
Yonghui Wang, Wengang Zhou, Hao Feng, Li Li, Houqiang Li

Single-image shadow removal is a significant task that is still unresolved. Most existing deep learning-based approaches attempt to remove the shadow directly, which can not deal with the shadow well. To handle this issue, we consider removing the shadow in a coarse-to-fine fashion and propose a simple but effective Progressive Recurrent Network (PRNet). The network aims to remove the shadow progressively, enabing us to flexibly adjust the number of iterations to strike a balance between performance and time. Our network comprises two parts: shadow feature extraction and progressive shadow removal. Specifically, the first part is a shallow ResNet which constructs the representations of the input shadow image on its original size, preventing the loss of high-frequency details caused by the downsampling operation. The second part has two critical components: the re-integration module and the update module. The proposed re-integration module can fully use the outputs of the previous iteration, providing input for the update module for further shadow removal. In this way, the proposed PRNet makes the whole process more concise and only uses 29% network parameters than the best published method. Extensive experiments on the three benchmarks, ISTD, ISTD+, and SRD, demonstrate that our method can effectively remove shadows and achieve superior performance.

Viaarxiv icon

State Sequences Prediction via Fourier Transform for Representation Learning

Oct 24, 2023
Mingxuan Ye, Yufei Kuang, Jie Wang, Rui Yang, Wengang Zhou, Houqiang Li, Feng Wu

While deep reinforcement learning (RL) has been demonstrated effective in solving complex control tasks, sample efficiency remains a key challenge due to the large amounts of data required for remarkable performance. Existing research explores the application of representation learning for data-efficient RL, e.g., learning predictive representations by predicting long-term future states. However, many existing methods do not fully exploit the structural information inherent in sequential state signals, which can potentially improve the quality of long-term decision-making but is difficult to discern in the time domain. To tackle this problem, we propose State Sequences Prediction via Fourier Transform (SPF), a novel method that exploits the frequency domain of state sequences to extract the underlying patterns in time series data for learning expressive representations efficiently. Specifically, we theoretically analyze the existence of structural information in state sequences, which is closely related to policy performance and signal regularity, and then propose to predict the Fourier transform of infinite-step future state sequences to extract such information. One of the appealing features of SPF is that it is simple to implement while not requiring storage of infinite-step future states as prediction targets. Experiments demonstrate that the proposed method outperforms several state-of-the-art algorithms in terms of both sample efficiency and performance.

Viaarxiv icon

I$^2$MD: 3D Action Representation Learning with Inter- and Intra-modal Mutual Distillation

Oct 24, 2023
Yunyao Mao, Jiajun Deng, Wengang Zhou, Zhenbo Lu, Wanli Ouyang, Houqiang Li

Recent progresses on self-supervised 3D human action representation learning are largely attributed to contrastive learning. However, in conventional contrastive frameworks, the rich complementarity between different skeleton modalities remains under-explored. Moreover, optimized with distinguishing self-augmented samples, models struggle with numerous similar positive instances in the case of limited action categories. In this work, we tackle the aforementioned problems by introducing a general Inter- and Intra-modal Mutual Distillation (I$^2$MD) framework. In I$^2$MD, we first re-formulate the cross-modal interaction as a Cross-modal Mutual Distillation (CMD) process. Different from existing distillation solutions that transfer the knowledge of a pre-trained and fixed teacher to the student, in CMD, the knowledge is continuously updated and bidirectionally distilled between modalities during pre-training. To alleviate the interference of similar samples and exploit their underlying contexts, we further design the Intra-modal Mutual Distillation (IMD) strategy, In IMD, the Dynamic Neighbors Aggregation (DNA) mechanism is first introduced, where an additional cluster-level discrimination branch is instantiated in each modality. It adaptively aggregates highly-correlated neighboring features, forming local cluster-level contrasting. Mutual distillation is then performed between the two branches for cross-level knowledge exchange. Extensive experiments on three datasets show that our approach sets a series of new records.

* submitted to IJCV. arXiv admin note: substantial text overlap with arXiv:2208.12448 
Viaarxiv icon

UniDoc: A Universal Large Multimodal Model for Simultaneous Text Detection, Recognition, Spotting and Understanding

Sep 02, 2023
Hao Feng, Zijian Wang, Jingqun Tang, Jinghui Lu, Wengang Zhou, Houqiang Li, Can Huang

Figure 1 for UniDoc: A Universal Large Multimodal Model for Simultaneous Text Detection, Recognition, Spotting and Understanding
Figure 2 for UniDoc: A Universal Large Multimodal Model for Simultaneous Text Detection, Recognition, Spotting and Understanding
Figure 3 for UniDoc: A Universal Large Multimodal Model for Simultaneous Text Detection, Recognition, Spotting and Understanding
Figure 4 for UniDoc: A Universal Large Multimodal Model for Simultaneous Text Detection, Recognition, Spotting and Understanding

In the era of Large Language Models (LLMs), tremendous strides have been made in the field of multimodal understanding. However, existing advanced algorithms are limited to effectively utilizing the immense representation capabilities and rich world knowledge inherent to these large pre-trained models, and the beneficial connections among tasks within the context of text-rich scenarios have not been sufficiently explored. In this work, we introduce UniDoc, a novel multimodal model equipped with text detection and recognition capabilities, which are deficient in existing approaches. Moreover, UniDoc capitalizes on the beneficial interactions among tasks to enhance the performance of each individual task. To implement UniDoc, we perform unified multimodal instruct tuning on the contributed large-scale instruction following datasets. Quantitative and qualitative experimental results show that UniDoc sets state-of-the-art scores across multiple challenging benchmarks. To the best of our knowledge, this is the first large multimodal model capable of simultaneous text detection, recognition, spotting, and understanding.

Viaarxiv icon

Sign Language Translation with Iterative Prototype

Aug 23, 2023
Huijie Yao, Wengang Zhou, Hao Feng, Hezhen Hu, Hao Zhou, Houqiang Li

Figure 1 for Sign Language Translation with Iterative Prototype
Figure 2 for Sign Language Translation with Iterative Prototype
Figure 3 for Sign Language Translation with Iterative Prototype
Figure 4 for Sign Language Translation with Iterative Prototype

This paper presents IP-SLT, a simple yet effective framework for sign language translation (SLT). Our IP-SLT adopts a recurrent structure and enhances the semantic representation (prototype) of the input sign language video via an iterative refinement manner. Our idea mimics the behavior of human reading, where a sentence can be digested repeatedly, till reaching accurate understanding. Technically, IP-SLT consists of feature extraction, prototype initialization, and iterative prototype refinement. The initialization module generates the initial prototype based on the visual feature extracted by the feature extraction module. Then, the iterative refinement module leverages the cross-attention mechanism to polish the previous prototype by aggregating it with the original video feature. Through repeated refinement, the prototype finally converges to a more stable and accurate state, leading to a fluent and appropriate translation. In addition, to leverage the sequential dependence of prototypes, we further propose an iterative distillation loss to compress the knowledge of the final iteration into previous ones. As the autoregressive decoding process is executed only once in inference, our IP-SLT is ready to improve various SLT systems with acceptable overhead. Extensive experiments are conducted on public benchmarks to demonstrate the effectiveness of the IP-SLT.

* Accepted by ICCV 2023 
Viaarxiv icon