University of Michigan
Abstract:3D inpainting often relies on multi-view 2D image inpainting, where the inherent inconsistencies across different inpainted views can result in blurred textures, spatial discontinuities, and distracting visual artifacts. These inconsistencies pose significant challenges when striving for accurate and realistic 3D object completion, particularly in applications that demand high fidelity and structural coherence. To overcome these limitations, we propose ObjFiller-3D, a novel method designed for the completion and editing of high-quality and consistent 3D objects. Instead of employing a conventional 2D image inpainting model, our approach leverages a curated selection of state-of-the-art video editing model to fill in the masked regions of 3D objects. We analyze the representation gap between 3D and videos, and propose an adaptation of a video inpainting model for 3D scene inpainting. In addition, we introduce a reference-based 3D inpainting method to further enhance the quality of reconstruction. Experiments across diverse datasets show that compared to previous methods, ObjFiller-3D produces more faithful and fine-grained reconstructions (PSNR of 26.6 vs. NeRFiller (15.9) and LPIPS of 0.19 vs. Instant3dit (0.25)). Moreover, it demonstrates strong potential for practical deployment in real-world 3D editing applications. Project page: https://objfiller3d.github.io/ Code: https://github.com/objfiller3d/ObjFiller-3D .
Abstract:Survey papers play a critical role in scientific communication by consolidating progress across a field. Recent advances in Large Language Models (LLMs) offer a promising solution by automating key steps in the survey-generation pipeline, such as retrieval, structuring, and summarization. However, existing LLM-based approaches often struggle with maintaining coherence across long, multi-section surveys and providing comprehensive citation coverage. To address these limitations, we introduce SurveyGen-I, an automatic survey generation framework that combines coarse-to-fine retrieval, adaptive planning, and memory-guided generation. SurveyGen-I first performs survey-level retrieval to construct the initial outline and writing plan, and then dynamically refines both during generation through a memory mechanism that stores previously written content and terminology, ensuring coherence across subsections. When the system detects insufficient context, it triggers fine-grained subsection-level retrieval. During generation, SurveyGen-I leverages this memory mechanism to maintain coherence across subsections. Experiments across four scientific domains demonstrate that SurveyGen-I consistently outperforms previous works in content quality, consistency, and citation coverage.
Abstract:Partial differential equations (PDEs) form the mathematical foundation for modeling physical systems in science and engineering, where numerical solutions demand rigorous accuracy-efficiency tradeoffs. Mesh movement techniques address this challenge by dynamically relocating mesh nodes to rapidly-varying regions, enhancing both simulation accuracy and computational efficiency. However, traditional approaches suffer from high computational complexity and geometric inflexibility, limiting their applicability, and existing supervised learning-based approaches face challenges in zero-shot generalization across diverse PDEs and mesh topologies.In this paper, we present an Unsupervised and Generalizable Mesh Movement Network (UGM2N). We first introduce unsupervised mesh adaptation through localized geometric feature learning, eliminating the dependency on pre-adapted meshes. We then develop a physics-constrained loss function, M-Uniform loss, that enforces mesh equidistribution at the nodal level.Experimental results demonstrate that the proposed network exhibits equation-agnostic generalization and geometric independence in efficient mesh adaptation. It demonstrates consistent superiority over existing methods, including robust performance across diverse PDEs and mesh geometries, scalability to multi-scale resolutions and guaranteed error reduction without mesh tangling.
Abstract:We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.
Abstract:Dynamic graph anomaly detection (DGAD) is essential for identifying anomalies in evolving graphs across domains such as finance, traffic, and social networks. Recently, generalist graph anomaly detection (GAD) models have shown promising results. They are pretrained on multiple source datasets and generalize across domains. While effective on static graphs, they struggle to capture evolving anomalies in dynamic graphs. Moreover, the continuous emergence of new domains and the lack of labeled data further challenge generalist DGAD. Effective cross-domain DGAD requires both domain-specific and domain-agnostic anomalous patterns. Importantly, these patterns evolve temporally within and across domains. Building on these insights, we propose a DGAD model with Dynamic Prototypes (DP) to capture evolving domain-specific and domain-agnostic patterns. Firstly, DP-DGAD extracts dynamic prototypes, i.e., evolving representations of normal and anomalous patterns, from temporal ego-graphs and stores them in a memory buffer. The buffer is selectively updated to retain general, domain-agnostic patterns while incorporating new domain-specific ones. Then, an anomaly scorer compares incoming data with dynamic prototypes to flag both general and domain-specific anomalies. Finally, DP-DGAD employs confidence-based pseudo-labeling for effective self-supervised adaptation in target domains. Extensive experiments demonstrate state-of-the-art performance across ten real-world datasets from different domains.
Abstract:The proliferation of Large Language Models (LLMs) in medicine has enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning, a cornerstone of clinical practice. This has catalyzed a shift from single-step answer generation to the development of LLMs explicitly designed for medical reasoning. This paper provides the first systematic review of this emerging field. We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies (e.g., supervised fine-tuning, reinforcement learning) and test-time mechanisms (e.g., prompt engineering, multi-agent systems). We analyze how these techniques are applied across different data modalities (text, image, code) and in key clinical applications such as diagnosis, education, and treatment planning. Furthermore, we survey the evolution of evaluation benchmarks from simple accuracy metrics to sophisticated assessments of reasoning quality and visual interpretability. Based on an analysis of 60 seminal studies from 2022-2025, we conclude by identifying critical challenges, including the faithfulness-plausibility gap and the need for native multimodal reasoning, and outlining future directions toward building efficient, robust, and sociotechnically responsible medical AI.
Abstract:We present GO-CBED, a goal-oriented Bayesian framework for sequential causal experimental design. Unlike conventional approaches that select interventions aimed at inferring the full causal model, GO-CBED directly maximizes the expected information gain (EIG) on user-specified causal quantities of interest, enabling more targeted and efficient experimentation. The framework is both non-myopic, optimizing over entire intervention sequences, and goal-oriented, targeting only model aspects relevant to the causal query. To address the intractability of exact EIG computation, we introduce a variational lower bound estimator, optimized jointly through a transformer-based policy network and normalizing flow-based variational posteriors. The resulting policy enables real-time decision-making via an amortized network. We demonstrate that GO-CBED consistently outperforms existing baselines across various causal reasoning and discovery tasks-including synthetic structural causal models and semi-synthetic gene regulatory networks-particularly in settings with limited experimental budgets and complex causal mechanisms. Our results highlight the benefits of aligning experimental design objectives with specific research goals and of forward-looking sequential planning.
Abstract:Video object removal and inpainting are critical tasks in the fields of computer vision and multimedia processing, aimed at restoring missing or corrupted regions in video sequences. Traditional methods predominantly rely on flow-based propagation and spatio-temporal Transformers, but these approaches face limitations in effectively leveraging long-term temporal features and ensuring temporal consistency in the completion results, particularly when dealing with large masks. Consequently, performance on extensive masked areas remains suboptimal. To address these challenges, this paper introduces a novel video inpainting approach leveraging the Diffusion Transformer (DiT). DiT synergistically combines the advantages of diffusion models and transformer architectures to maintain long-term temporal consistency while ensuring high-quality inpainting results. We propose a Circular Position-Shift strategy to further enhance long-term temporal consistency during the inference stage. Additionally, the proposed method automatically detects objects within videos, interactively removes specified objects, and generates corresponding prompts. In terms of processing speed, it takes only 180 seconds (testing on one NVIDIA A100 GPU) to complete a video with a resolution of $1080 \times 1920$ with 121 frames without any acceleration method. Experimental results indicate that the proposed method demonstrates superior performance in content fidelity, texture restoration, and temporal consistency. Project page: https://jieliu95.github.io/EraserDiT_demo.
Abstract:Psychological counseling faces huge challenges due to the growing demand for mental health services and the shortage of trained professionals. Large language models (LLMs) have shown potential to assist psychological counseling, especially in empathy and emotional support. However, existing models lack a deep understanding of emotions and are unable to generate personalized treatment plans based on fine-grained emotions. To address these shortcomings, we present AI PsyRoom, a multi-agent simulation framework designed to enhance psychological counseling by generating empathetic and emotionally nuanced conversations. By leveraging fine-grained emotion classification and a multi-agent framework, we construct a multi-agent PsyRoom A for dialogue reconstruction, generating a high-quality dialogue dataset EmoPsy, which contains 35 sub-emotions, 423 specific emotion scenarios, and 12,350 dialogues. We also propose PsyRoom B for generating personalized treatment plans. Quantitative evaluations demonstrate that AI PsyRoom significantly outperforms state-of-the-art methods, achieving 18% improvement in problem orientation, 23% in expression, 24% in Empathy, and 16% in interactive communication quality. The datasets and models are publicly available, providing a foundation for advancing AI-assisted psychological counseling research.
Abstract:Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: Token-level methods (e.g., PPO) aim to provide the fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.