Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, China, Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai, China, Shanghai Research Center for Quantum Sciences, Shanghai, China
Abstract:Reconstructing Dynamic 3D Gaussian Splatting (3DGS) from low-framerate RGB videos is challenging. This is because large inter-frame motions will increase the uncertainty of the solution space. For example, one pixel in the first frame might have more choices to reach the corresponding pixel in the second frame. Event cameras can asynchronously capture rapid visual changes and are robust to motion blur, but they do not provide color information. Intuitively, the event stream can provide deterministic constraints for the inter-frame large motion by the event trajectories. Hence, combining low-temporal-resolution images with high-framerate event streams can address this challenge. However, it is challenging to jointly optimize Dynamic 3DGS using both RGB and event modalities due to the significant discrepancy between these two data modalities. This paper introduces a novel framework that jointly optimizes dynamic 3DGS from the two modalities. The key idea is to adopt event motion priors to guide the optimization of the deformation fields. First, we extract the motion priors encoded in event streams by using the proposed LoCM unsupervised fine-tuning framework to adapt an event flow estimator to a certain unseen scene. Then, we present the geometry-aware data association method to build the event-Gaussian motion correspondence, which is the primary foundation of the pipeline, accompanied by two useful strategies, namely motion decomposition and inter-frame pseudo-label. Extensive experiments show that our method outperforms existing image and event-based approaches across synthetic and real scenes and prove that our method can effectively optimize dynamic 3DGS with the help of event data.
Abstract:Recent advancements in legged robot perceptive locomotion have shown promising progress. However, terrain-aware humanoid locomotion remains largely constrained to two paradigms: depth image-based end-to-end learning and elevation map-based methods. The former suffers from limited training efficiency and a significant sim-to-real gap in depth perception, while the latter depends heavily on multiple vision sensors and localization systems, resulting in latency and reduced robustness. To overcome these challenges, we propose a novel framework that tightly integrates three key components: (1) Terrain-Aware Locomotion Policy with a Blind Backbone, which leverages pre-trained elevation map-based perception to guide reinforcement learning with minimal visual input; (2) Multi-Modality Cross-Attention Transformer, which reconstructs structured terrain representations from noisy depth images; (3) Realistic Depth Images Synthetic Method, which employs self-occlusion-aware ray casting and noise-aware modeling to synthesize realistic depth observations, achieving over 30\% reduction in terrain reconstruction error. This combination enables efficient policy training with limited data and hardware resources, while preserving critical terrain features essential for generalization. We validate our framework on a full-sized humanoid robot, demonstrating agile and adaptive locomotion across diverse and challenging terrains.
Abstract:Should LLM reasoning live in a separate module, or within a single model's forward pass and representational space? We study dual-architecture latent reasoning, where a fluent Base exchanges latent messages with a Coprocessor, and test two hypotheses aimed at improving latent communication over Liu et al. (2024): (H1) increase channel capacity; (H2) learn communication via joint finetuning. Under matched latent-token budgets on GPT-2 and Qwen-3, H2 is consistently strongest while H1 yields modest gains. A unified soft-embedding baseline, a single model with the same forward pass and shared representations, using the same latent-token budget, nearly matches H2 and surpasses H1, suggesting current dual designs mostly add compute rather than qualitatively improving reasoning. Across GSM8K, ProsQA, and a Countdown stress test with increasing branching factor, scaling the latent-token budget beyond small values fails to improve robustness. Latent analyses show overlapping subspaces with limited specialization, consistent with weak reasoning gains. We conclude dual-model latent reasoning remains promising in principle, but likely requires objectives and communication mechanisms that explicitly shape latent spaces for algorithmic planning.
Abstract:Imitation learning based policies perform well in robotic manipulation, but they often degrade under *egocentric viewpoint shifts* when trained from a single egocentric viewpoint. To address this issue, we present **EgoDemoGen**, a framework that generates *paired* novel egocentric demonstrations by retargeting actions in the novel egocentric frame and synthesizing the corresponding egocentric observation videos with proposed generative video repair model **EgoViewTransfer**, which is conditioned by a novel-viewpoint reprojected scene video and a robot-only video rendered from the retargeted joint actions. EgoViewTransfer is finetuned from a pretrained video generation model using self-supervised double reprojection strategy. We evaluate EgoDemoGen on both simulation (RoboTwin2.0) and real-world robot. After training with a mixture of EgoDemoGen-generated novel egocentric demonstrations and original standard egocentric demonstrations, policy success rate improves **absolutely** by **+17.0%** for standard egocentric viewpoint and by **+17.7%** for novel egocentric viewpoints in simulation. On real-world robot, the **absolute** improvements are **+18.3%** and **+25.8%**. Moreover, performance continues to improve as the proportion of EgoDemoGen-generated demonstrations increases, with diminishing returns. These results demonstrate that EgoDemoGen provides a practical route to egocentric viewpoint-robust robotic manipulation.
Abstract:Object hallucination in Large Vision-Language Models (LVLMs) significantly impedes their real-world applicability. As the primary component for accurately interpreting visual information, the choice of visual encoder is pivotal. We hypothesize that the diverse training paradigms employed by different visual encoders instill them with distinct inductive biases, which leads to their diverse hallucination performances. Existing benchmarks typically focus on coarse-grained hallucination detection and fail to capture the diverse hallucinations elaborated in our hypothesis. To systematically analyze these effects, we introduce VHBench-10, a comprehensive benchmark with approximately 10,000 samples for evaluating LVLMs across ten fine-grained hallucination categories. Our evaluations confirm encoders exhibit unique hallucination characteristics. Building on these insights and the suboptimality of simple feature fusion, we propose VisionWeaver, a novel Context-Aware Routing Network. It employs global visual features to generate routing signals, dynamically aggregating visual features from multiple specialized experts. Comprehensive experiments confirm the effectiveness of VisionWeaver in significantly reducing hallucinations and improving overall model performance.
Abstract:We introduce HumanoidVerse, a novel framework for vision-language guided humanoid control that enables a single physically simulated robot to perform long-horizon, multi-object rearrangement tasks across diverse scenes. Unlike prior methods that operate in fixed settings with single-object interactions, our approach supports consecutive manipulation of multiple objects, guided only by natural language instructions and egocentric camera RGB observations. HumanoidVerse is trained via a multi-stage curriculum using a dual-teacher distillation pipeline, enabling fluid transitions between sub-tasks without requiring environment resets. To support this, we construct a large-scale dataset comprising 350 multi-object tasks spanning four room layouts. Extensive experiments in the Isaac Gym simulator demonstrate that our method significantly outperforms prior state-of-the-art in both task success rate and spatial precision, and generalizes well to unseen environments and instructions. Our work represents a key step toward robust, general-purpose humanoid agents capable of executing complex, sequential tasks under real-world sensory constraints. The video visualization results can be found on the project page: https://haozhuo-zhang.github.io/HumanoidVerse-project-page/.
Abstract:Advancements in AI have led to agents in networked environments increasingly mirroring human behavior, thereby blurring the boundary between artificial and human actors in specific contexts. This shift brings about significant challenges in trust, responsibility, ethics, security and etc. The difficulty in supervising of agent behaviors may lead to issues such as data contamination and unclear accountability. To address these challenges, this paper proposes the "Network Behavior Lifecycle" model, which divides network behavior into 6 stages and systematically analyzes the behavioral differences between humans and agents at each stage. Based on these insights, the paper further introduces the "Agent for Agent (A4A)" paradigm and the "Human-Agent Behavioral Disparity (HABD)" model, which examine the fundamental distinctions between human and agent behaviors across 5 dimensions: decision mechanism, execution efficiency, intention-behavior consistency, behavioral inertia, and irrational patterns. The effectiveness of the model is verified through real-world cases such as red team penetration and blue team defense. Finally, the paper discusses future research directions in dynamic cognitive governance architecture, behavioral disparity quantification, and meta-governance protocol stacks, aiming to provide a theoretical foundation and technical roadmap for secure and trustworthy human-agent collaboration.
Abstract:Paralinguistic vocalizations-including non-verbal sounds like laughter and breathing, as well as lexicalized interjections such as "uhm" and "oh"-are integral to natural spoken communication. Despite their importance in conveying affect, intent, and interactional cues, such cues remain largely overlooked in conventional automatic speech recognition (ASR) and text-to-speech (TTS) systems. We present NVSpeech, an integrated and scalable pipeline that bridges the recognition and synthesis of paralinguistic vocalizations, encompassing dataset construction, ASR modeling, and controllable TTS. (1) We introduce a manually annotated dataset of 48,430 human-spoken utterances with 18 word-level paralinguistic categories. (2) We develop the paralinguistic-aware ASR model, which treats paralinguistic cues as inline decodable tokens (e.g., "You're so funny [Laughter]"), enabling joint lexical and non-verbal transcription. This model is then used to automatically annotate a large corpus, the first large-scale Chinese dataset of 174,179 utterances (573 hours) with word-level alignment and paralingustic cues. (3) We finetune zero-shot TTS models on both human- and auto-labeled data to enable explicit control over paralinguistic vocalizations, allowing context-aware insertion at arbitrary token positions for human-like speech synthesis. By unifying the recognition and generation of paralinguistic vocalizations, NVSpeech offers the first open, large-scale, word-level annotated pipeline for expressive speech modeling in Mandarin, integrating recognition and synthesis in a scalable and controllable manner. Dataset and audio demos are available at https://nvspeech170k.github.io/.
Abstract:Scientific research increasingly relies on specialized computational tools, yet effectively utilizing these tools demands substantial domain expertise. While Large Language Models (LLMs) show promise in tool automation, they struggle to seamlessly integrate and orchestrate multiple tools for complex scientific workflows. Here, we present SciToolAgent, an LLM-powered agent that automates hundreds of scientific tools across biology, chemistry, and materials science. At its core, SciToolAgent leverages a scientific tool knowledge graph that enables intelligent tool selection and execution through graph-based retrieval-augmented generation. The agent also incorporates a comprehensive safety-checking module to ensure responsible and ethical tool usage. Extensive evaluations on a curated benchmark demonstrate that SciToolAgent significantly outperforms existing approaches. Case studies in protein engineering, chemical reactivity prediction, chemical synthesis, and metal-organic framework screening further demonstrate SciToolAgent's capability to automate complex scientific workflows, making advanced research tools accessible to both experts and non-experts.
Abstract:Humanoid robot technology is advancing rapidly, with manufacturers introducing diverse heterogeneous visual perception modules tailored to specific scenarios. Among various perception paradigms, occupancy-based representation has become widely recognized as particularly suitable for humanoid robots, as it provides both rich semantic and 3D geometric information essential for comprehensive environmental understanding. In this work, we present Humanoid Occupancy, a generalized multimodal occupancy perception system that integrates hardware and software components, data acquisition devices, and a dedicated annotation pipeline. Our framework employs advanced multi-modal fusion techniques to generate grid-based occupancy outputs encoding both occupancy status and semantic labels, thereby enabling holistic environmental understanding for downstream tasks such as task planning and navigation. To address the unique challenges of humanoid robots, we overcome issues such as kinematic interference and occlusion, and establish an effective sensor layout strategy. Furthermore, we have developed the first panoramic occupancy dataset specifically for humanoid robots, offering a valuable benchmark and resource for future research and development in this domain. The network architecture incorporates multi-modal feature fusion and temporal information integration to ensure robust perception. Overall, Humanoid Occupancy delivers effective environmental perception for humanoid robots and establishes a technical foundation for standardizing universal visual modules, paving the way for the widespread deployment of humanoid robots in complex real-world scenarios.