LiDAR semantic segmentation plays a crucial role in enabling autonomous driving and robots to understand their surroundings accurately and robustly. There are different types of methods, such as point-based, range-image-based, polar-based, and hybrid methods. Among these, range-image-based methods are widely used due to their efficiency. However, they face a significant challenge known as the ``many-to-one'' problem caused by the range image's limited horizontal and vertical angular resolution. As a result, around 20\% of the 3D points can be occluded. In this paper, we present TFNet, a range-image-based LiDAR semantic segmentation method that utilizes temporal information to address this issue. Specifically, we incorporate a temporal fusion layer to extract useful information from previous scans and integrate it with the current scan. We then design a max-voting-based post-processing technique to correct false predictions, particularly those caused by the ``many-to-one'' issue. We evaluated the approach on two benchmarks and demonstrate that the post-processing technique is generic and can be applied to various networks. We will release our code and models.
With the success of Large Language Models (LLMs), a surge of Generative Vision-Language Models (GVLMs) have been constructed via multimodal instruction tuning. The tuning recipe substantially deviates from the common contrastive vision-language learning. However, the performance of GVLMs in multimodal compositional reasoning remains largely unexplored, as existing evaluation metrics and benchmarks focus predominantly on assessing contrastive models like CLIP. In this paper, we examine the potential evaluation metrics to assess the GVLMs and hypothesize generative score methods are suitable for evaluating compositionality. In addition, current benchmarks tend to prioritize syntactic correctness over semantics. The presence of morphological bias in these benchmarks can be exploited by GVLMs, leading to ineffective evaluations. To combat this, we define a MorphoBias Score to quantify the morphological bias and propose a novel LLM-based strategy to calibrate the bias. Moreover, a challenging task is added to evaluate the robustness of GVLMs against inherent inclination toward syntactic correctness. We include the calibrated dataset and the task into a new benchmark, namely MOrphologicall De-biased Benchmark (MODE). Our study provides the first unbiased benchmark for the compositionality of GVLMs, facilitating future research in this direction. We will release our code and datasets.
This paper studies introducing viewpoint invariant feature representations in existing action recognition architecture. Despite significant progress in action recognition, efficiently handling geometric variations in large-scale datasets remains challenging. To tackle this problem, we propose a novel Spatial-Temporal Alignment Network (STAN), which explicitly learns geometric invariant representations for action recognition. Notably, the STAN model is light-weighted and generic, which could be plugged into existing action recognition models (e.g., MViTv2) with a low extra computational cost. We test our STAN model on widely-used datasets like UCF101 and HMDB51. The experimental results show that the STAN model can consistently improve the state-of-the-art models in action recognition tasks in trained-from-scratch settings.
We study the problem of human action recognition using motion capture (MoCap) sequences. Unlike existing techniques that take multiple manual steps to derive standardized skeleton representations as model input, we propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences. The model uses a hierarchical transformer with intra-frame off-set attention and inter-frame self-attention. The attention mechanism allows the model to freely attend between any two vertex patches to learn non-local relationships in the spatial-temporal domain. Masked vertex modeling and future frame prediction are used as two self-supervised tasks to fully activate the bi-directional and auto-regressive attention in our hierarchical transformer. The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models on common MoCap benchmarks. Code is available at https://github.com/zgzxy001/STMT.
We study the task of robust feature representations, aiming to generalize well on multiple datasets for action recognition. We build our method on Transformers for its efficacy. Although we have witnessed great progress for video action recognition in the past decade, it remains challenging yet valuable how to train a single model that can perform well across multiple datasets. Here, we propose a novel multi-dataset training paradigm, MultiTrain, with the design of two new loss terms, namely informative loss and projection loss, aiming to learn robust representations for action recognition. In particular, the informative loss maximizes the expressiveness of the feature embedding while the projection loss for each dataset mines the intrinsic relations between classes across datasets. We verify the effectiveness of our method on five challenging datasets, Kinetics-400, Kinetics-700, Moments-in-Time, Activitynet and Something-something-v2 datasets. Extensive experimental results show that our method can consistently improve state-of-the-art performance. Code and models are released.
The SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team. In 2022, the challenges were composed of 6 vision-based tasks: (1) action spotting, focusing on retrieving action timestamps in long untrimmed videos, (2) replay grounding, focusing on retrieving the live moment of an action shown in a replay, (3) pitch localization, focusing on detecting line and goal part elements, (4) camera calibration, dedicated to retrieving the intrinsic and extrinsic camera parameters, (5) player re-identification, focusing on retrieving the same players across multiple views, and (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams. Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations. More information on the tasks, challenges and leaderboards are available on https://www.soccer-net.org. Baselines and development kits are available on https://github.com/SoccerNet.
Cross-modal retrieval between videos and texts has gained increasing research interest due to the rapid emergence of videos on the web. Generally, a video contains rich instance and event information and the query text only describes a part of the information. Thus, a video can correspond to multiple different text descriptions and queries. We call this phenomenon the ``Video-Text Correspondence Ambiguity'' problem. Current techniques mostly concentrate on mining local or multi-level alignment between contents of a video and text (\textit{e.g.}, object to entity and action to verb). It is difficult for these methods to alleviate the video-text correspondence ambiguity by describing a video using only one single feature, which is required to be matched with multiple different text features at the same time. To address this problem, we propose a Text-Adaptive Multiple Visual Prototype Matching model, which automatically captures multiple prototypes to describe a video by adaptive aggregation of video token features. Given a query text, the similarity is determined by the most similar prototype to find correspondence in the video, which is termed text-adaptive matching. To learn diverse prototypes for representing the rich information in videos, we propose a variance loss to encourage different prototypes to attend to different contents of the video. Our method outperforms state-of-the-art methods on four public video retrieval datasets.
This paper studies how to introduce viewpoint-invariant feature representations that can help action recognition and detection. Although we have witnessed great progress of action recognition in the past decade, it remains challenging yet interesting how to efficiently model the geometric variations in large scale datasets. This paper proposes a novel Spatial-Temporal Alignment Network (STAN) that aims to learn geometric invariant representations for action recognition and action detection. The STAN model is very light-weighted and generic, which could be plugged into existing action recognition models like ResNet3D and the SlowFast with a very low extra computational cost. We test our STAN model extensively on AVA, Kinetics-400, AVA-Kinetics, Charades, and Charades-Ego datasets. The experimental results show that the STAN model can consistently improve the state of the arts in both action detection and action recognition tasks. We will release our data, models and code.