School of Information, North China University of Technology
Abstract:Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
Abstract:Visual AutoRegressive modeling (VAR) suffers from substantial computational cost due to the massive token count involved. Failing to account for the continuous evolution of modeling dynamics, existing VAR token reduction methods face three key limitations: heuristic stage partition, non-adaptive schedules, and limited acceleration scope, thereby leaving significant acceleration potential untapped. Since entropy variation intrinsically reflects the transition of predictive uncertainty, it offers a principled measure to capture modeling dynamics evolution. Therefore, we propose NOVA, a training-free token reduction acceleration framework for VAR models via entropy analysis. NOVA adaptively determines the acceleration activation scale during inference by online identifying the inflection point of scale entropy growth. Through scale-linkage and layer-linkage ratio adjustment, NOVA dynamically computes distinct token reduction ratios for each scale and layer, pruning low-entropy tokens while reusing the cache derived from the residuals at the prior scale to accelerate inference and maintain generation quality. Extensive experiments and analyses validate NOVA as a simple yet effective training-free acceleration framework.
Abstract:Charts are a fundamental visualization format for structured data analysis. Enabling end-to-end chart editing according to user intent is of great practical value, yet remains challenging due to the need for both fine-grained control and global structural consistency. Most existing approaches adopt pipeline-based designs, where natural language or code serves as an intermediate representation, limiting their ability to faithfully execute complex edits. We introduce ChartE$^{3}$, an End-to-End Chart Editing benchmark that directly evaluates models without relying on intermediate natural language programs or code-level supervision. ChartE$^{3}$ focuses on two complementary editing dimensions: local editing, which involves fine-grained appearance changes such as font or color adjustments, and global editing, which requires holistic, data-centric transformations including data filtering and trend line addition. ChartE$^{3}$ contains over 1,200 high-quality samples constructed via a well-designed data pipeline with human curation. Each sample is provided as a triplet of a chart image, its underlying code, and a multimodal editing instruction, enabling evaluation from both objective and subjective perspectives. Extensive benchmarking of state-of-the-art multimodal large language models reveals substantial performance gaps, particularly on global editing tasks, highlighting critical limitations in current end-to-end chart editing capabilities.
Abstract:Large Language Models (LLMs) have revolutionized Recommender Systems (RS) through advanced generative user modeling. However, LLM-based RS (LLM-RS) often inadvertently perpetuates bias present in the training data, leading to severe fairness issues. Addressing these fairness problems in LLM-RS faces two significant challenges. 1) Existing debiasing methods, designed for specific bias types, lack the generality to handle diverse or emerging biases in real-world applications. 2) Debiasing methods relying on retraining are computationally infeasible given the massive parameter scale of LLMs. To overcome these challenges, we propose FUDLR (Fast Unified Debiasing for LLM-RS). The core idea is to reformulate the debiasing problem as an efficient machine unlearning task with two stages. First, FUDLR identifies bias-inducing samples to unlearn through a novel bias-agnostic mask, optimized to balance fairness improvement with accuracy preservation. Its bias-agnostic design allows adaptability to various or co-existing biases simply by incorporating different fairness metrics. Second, FUDLR performs efficient debiasing by estimating and removing the influence of identified samples on model parameters. Extensive experiments demonstrate that FUDLR effectively and efficiently improves fairness while preserving recommendation accuracy, offering a practical path toward socially responsible LLM-RS. The code and data are available at https://github.com/JinLi-i/FUDLR.
Abstract:Mechanistic Interpretability (MI) has emerged as a vital approach to demystify the opaque decision-making of Large Language Models (LLMs). However, existing reviews primarily treat MI as an observational science, summarizing analytical insights while lacking a systematic framework for actionable intervention. To bridge this gap, we present a practical survey structured around the pipeline: "Locate, Steer, and Improve." We formally categorize Localizing (diagnosis) and Steering (intervention) methods based on specific Interpretable Objects to establish a rigorous intervention protocol. Furthermore, we demonstrate how this framework enables tangible improvements in Alignment, Capability, and Efficiency, effectively operationalizing MI as an actionable methodology for model optimization. The curated paper list of this work is available at https://github.com/rattlesnakey/Awesome-Actionable-MI-Survey.
Abstract:Long chain-of-thought (CoT) trajectories provide rich supervision signals for distilling reasoning from teacher to student LLMs. However, both prior work and our experiments show that trajectories from stronger teachers do not necessarily yield better students, highlighting the importance of data-student suitability in distillation. Existing methods assess suitability primarily through student likelihood, favoring trajectories that closely align with the model's current behavior but overlooking more informative ones. Addressing this, we propose Rank-Surprisal Ratio (RSR), a simple metric that captures both alignment and informativeness to assess the suitability of a reasoning trajectory. RSR is motivated by the observation that effective trajectories typically combine low absolute probability with relatively high-ranked tokens under the student model, balancing learning signal strength and behavioral alignment. Concretely, RSR is defined as the ratio of a trajectory's average token-wise rank to its average negative log-likelihood, and is straightforward to compute and interpret. Across five student models and reasoning trajectories from 11 diverse teachers, RSR strongly correlates with post-training performance (average Spearman 0.86), outperforming existing metrics. We further demonstrate its practical utility in both trajectory selection and teacher selection.
Abstract:We present a novel framework for high-fidelity novel view synthesis (NVS) from sparse images, addressing key limitations in recent feed-forward 3D Gaussian Splatting (3DGS) methods built on Vision Transformer (ViT) backbones. While ViT-based pipelines offer strong geometric priors, they are often constrained by low-resolution inputs due to computational costs. Moreover, existing generative enhancement methods tend to be 3D-agnostic, resulting in inconsistent structures across views, especially in unseen regions. To overcome these challenges, we design a Dual-Domain Detail Perception Module, which enables handling high-resolution images without being limited by the ViT backbone, and endows Gaussians with additional features to store high-frequency details. We develop a feature-guided diffusion network, which can preserve high-frequency details during the restoration process. We introduce a unified training strategy that enables joint optimization of the ViT-based geometric backbone and the diffusion-based refinement module. Experiments demonstrate that our method can maintain superior generation quality across multiple datasets.
Abstract:Humanoid robots are capable of performing various actions such as greeting, dancing and even backflipping. However, these motions are often hard-coded or specifically trained, which limits their versatility. In this work, we present FRoM-W1, an open-source framework designed to achieve general humanoid whole-body motion control using natural language. To universally understand natural language and generate corresponding motions, as well as enable various humanoid robots to stably execute these motions in the physical world under gravity, FRoM-W1 operates in two stages: (a) H-GPT: utilizing massive human data, a large-scale language-driven human whole-body motion generation model is trained to generate diverse natural behaviors. We further leverage the Chain-of-Thought technique to improve the model's generalization in instruction understanding. (b) H-ACT: After retargeting generated human whole-body motions into robot-specific actions, a motion controller that is pretrained and further fine-tuned through reinforcement learning in physical simulation enables humanoid robots to accurately and stably perform corresponding actions. It is then deployed on real robots via a modular simulation-to-reality module. We extensively evaluate FRoM-W1 on Unitree H1 and G1 robots. Results demonstrate superior performance on the HumanML3D-X benchmark for human whole-body motion generation, and our introduced reinforcement learning fine-tuning consistently improves both motion tracking accuracy and task success rates of these humanoid robots. We open-source the entire FRoM-W1 framework and hope it will advance the development of humanoid intelligence.
Abstract:Deep Research Agents are increasingly used for automated survey generation. However, whether they can write surveys like human experts remains unclear. Existing benchmarks focus on fluency or citation accuracy, but none evaluates the core capabilities: retrieving essential papers and organizing them into coherent knowledge structures. We introduce TaxoBench, a diagnostic benchmark derived from 72 highly-cited computer science surveys. We manually extract expert-authored taxonomy trees containing 3,815 precisely categorized citations as ground truth. Our benchmark supports two evaluation modes: Deep Research mode tests end-to-end retrieval and organization given only a topic, while Bottom-Up mode isolates structuring capability by providing the exact papers human experts used. We evaluate 7 leading Deep Research agents and 12 frontier LLMs. Results reveal a dual bottleneck: the best agent recalls only 20.9% of expert-selected papers, and even with perfect input, the best model achieves only 0.31 ARI in organization. Current deep research agents remain far from expert-level survey writing. Our benchmark is publicly available at https://github.com/KongLongGeFDU/TaxoBench.
Abstract:This paper studies a reconfigurable intelligent surface (RIS)-enhanced decoupled symbiotic radio (SR) system in which a primary transmitter delivers common data to multiple primary receivers (PRs), while a RIS-based backscatter device sends secondary data to a backscatter receiver (BRx). Unlike conventional SR, the BRx performs energy detection and never decodes the primary signal, thereby removing ambiguity and preventing exposure of the primary payload to unintended receivers. In this paper, we formulate the problem as the minimization of the transmit power subject to a common broadcast rate constraint across all PRs and a bit error rate (BER) constraint at the BRx. The problem is nonconvex due to the unit-modulus RIS constraint and coupled quadratic forms. Leveraging a rate-balanced reformulation and a monotonic BER ratio characterization, we develop a low-complexity penalty-based block coordinate descent algorithm with closed-form updates. Numerical results show fast convergence of the proposed algorithm and reduced power consumption of the considered RIS-enhanced information-decoupled SR system over conventional SR baselines.