Alert button
Picture for Qi Zhang

Qi Zhang

Alert button

RHINO: Regularizing the Hash-based Implicit Neural Representation

Sep 22, 2023
Hao Zhu, Fengyi Liu, Qi Zhang, Xun Cao, Zhan Ma

The use of Implicit Neural Representation (INR) through a hash-table has demonstrated impressive effectiveness and efficiency in characterizing intricate signals. However, current state-of-the-art methods exhibit insufficient regularization, often yielding unreliable and noisy results during interpolations. We find that this issue stems from broken gradient flow between input coordinates and indexed hash-keys, where the chain rule attempts to model discrete hash-keys, rather than the continuous coordinates. To tackle this concern, we introduce RHINO, in which a continuous analytical function is incorporated to facilitate regularization by connecting the input coordinate and the network additionally without modifying the architecture of current hash-based INRs. This connection ensures a seamless backpropagation of gradients from the network's output back to the input coordinates, thereby enhancing regularization. Our experimental results not only showcase the broadened regularization capability across different hash-based INRs like DINER and Instant NGP, but also across a variety of tasks such as image fitting, representation of signed distance functions, and optimization of 5D static / 6D dynamic neural radiance fields. Notably, RHINO outperforms current state-of-the-art techniques in both quality and speed, affirming its superiority.

* 17 pages, 11 figures 
Viaarxiv icon

An Empirical Study of NetOps Capability of Pre-Trained Large Language Models

Sep 19, 2023
Yukai Miao, Yu Bai, Li Chen, Dan Li, Haifeng Sun, Xizheng Wang, Ziqiu Luo, Yanyu Ren, Dapeng Sun, Xiuting Xu, Qi Zhang, Chao Xiang, Xinchi Li

Nowadays, the versatile capabilities of Pre-trained Large Language Models (LLMs) have attracted much attention from the industry. However, some vertical domains are more interested in the in-domain capabilities of LLMs. For the Networks domain, we present NetEval, an evaluation set for measuring the comprehensive capabilities of LLMs in Network Operations (NetOps). NetEval is designed for evaluating the commonsense knowledge and inference ability in NetOps in a multi-lingual context. NetEval consists of 5,732 questions about NetOps, covering five different sub-domains of NetOps. With NetEval, we systematically evaluate the NetOps capability of 26 publicly available LLMs. The results show that only GPT-4 can achieve a performance competitive to humans. However, some open models like LLaMA 2 demonstrate significant potential.

Viaarxiv icon

The Rise and Potential of Large Language Model Based Agents: A Survey

Sep 19, 2023
Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, Tao Gui

For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent agents, but they mainly focus on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many researchers have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. In this paper, we perform a comprehensive survey on LLM-based agents. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents. Building upon this, we present a general framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored for different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge from an agent society, and the insights they offer for human society. Finally, we discuss several key topics and open problems within the field. A repository for the related papers at

* 86 pages, 12 figures 
Viaarxiv icon

Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail

Sep 19, 2023
Yiyu Zhuang, Qi Zhang, Ying Feng, Hao Zhu, Yao Yao, Xiaoyu Li, Yan-Pei Cao, Ying Shan, Xun Cao

We present LoD-NeuS, an efficient neural representation for high-frequency geometry detail recovery and anti-aliased novel view rendering. Drawing inspiration from voxel-based representations with the level of detail (LoD), we introduce a multi-scale tri-plane-based scene representation that is capable of capturing the LoD of the signed distance function (SDF) and the space radiance. Our representation aggregates space features from a multi-convolved featurization within a conical frustum along a ray and optimizes the LoD feature volume through differentiable rendering. Additionally, we propose an error-guided sampling strategy to guide the growth of the SDF during the optimization. Both qualitative and quantitative evaluations demonstrate that our method achieves superior surface reconstruction and photorealistic view synthesis compared to state-of-the-art approaches.

* Accept to SIGGRAPH Asia 2023 conference track 
Viaarxiv icon

Syntax Tree Constrained Graph Network for Visual Question Answering

Sep 17, 2023
Xiangrui Su, Qi Zhang, Chongyang Shi, Jiachang Liu, Liang Hu

Visual Question Answering (VQA) aims to automatically answer natural language questions related to given image content. Existing VQA methods integrate vision modeling and language understanding to explore the deep semantics of the question. However, these methods ignore the significant syntax information of the question, which plays a vital role in understanding the essential semantics of the question and guiding the visual feature refinement. To fill the gap, we suggested a novel Syntax Tree Constrained Graph Network (STCGN) for VQA based on entity message passing and syntax tree. This model is able to extract a syntax tree from questions and obtain more precise syntax information. Specifically, we parse questions and obtain the question syntax tree using the Stanford syntax parsing tool. From the word level and phrase level, syntactic phrase features and question features are extracted using a hierarchical tree convolutional network. We then design a message-passing mechanism for phrase-aware visual entities and capture entity features according to a given visual context. Extensive experiments on VQA2.0 datasets demonstrate the superiority of our proposed model.

Viaarxiv icon

Cure the headache of Transformers via Collinear Constrained Attention

Sep 15, 2023
Shiyi Zhu, Jing Ye, Wei Jiang, Qi Zhang, Yifan Wu, Jianguo Li

As the rapid progression of practical applications based on Large Language Models continues, the importance of extrapolating performance has grown exponentially in the research domain. In our study, we identified an anomalous behavior in Transformer models that had been previously overlooked, leading to a chaos around closest tokens which carried the most important information. We've coined this discovery the "headache of Transformers". To address this at its core, we introduced a novel self-attention structure named Collinear Constrained Attention (CoCA). This structure can be seamlessly integrated with existing extrapolation, interpolation methods, and other optimization strategies designed for traditional Transformer models. We have achieved excellent extrapolating performance even for 16 times to 24 times of sequence lengths during inference without any fine-tuning on our model. We have also enhanced CoCA's computational and spatial efficiency to ensure its practicality. We plan to open-source CoCA shortly. In the meantime, we've made our code available in the appendix for reappearing experiments.

* 16 pages, 6 figures 
Viaarxiv icon

One-Bit-Aided Modulo Sampling for DOA Estimation

Sep 10, 2023
Qi Zhang, Jiang Zhu, Zhiwei Xu, De Wen Soh

Figure 1 for One-Bit-Aided Modulo Sampling for DOA Estimation
Figure 2 for One-Bit-Aided Modulo Sampling for DOA Estimation
Figure 3 for One-Bit-Aided Modulo Sampling for DOA Estimation
Figure 4 for One-Bit-Aided Modulo Sampling for DOA Estimation

Modulo sampling or unlimited sampling has recently drawn a great deal of attention for cutting-edge applications, due to overcoming the barrier of information loss through sensor saturation and clipping. This is a significant problem, especially when the range of signal amplitudes is unknown or in the near-far case. To overcome this fundamental bottleneck, we propose a one-bit-aided (1bit-aided) modulo sampling scheme for direction-of-arrival (DOA) estimation. On the one hand, one-bit quantization involving a simple comparator offers the advantages of low-cost and low-complexity implementation. On the other hand, one-bit quantization provides an estimate of the normalized covariance matrix of the unquantized measurements via the arcsin law. The estimate of the normalized covariance matrix is used to implement blind integer-forcing (BIF) decoder to unwrap the modulo samples to construct the covariance matrix, and subspace methods can be used to perform the DOA estimation. Our approach named as 1bit-aided-BIF addresses the near-far problem well and overcomes the intrinsic low dynamic range of one-bit quantization. Numerical experiments validate the excellent performance of the proposed algorithm compared to using a high-precision ADC directly in the given set up.

Viaarxiv icon