The University of Sydney, Australia
Abstract:Vision-language models (VLMs) achieve remarkable performance but remain vulnerable to adversarial attacks. Entropy, a measure of model uncertainty, is strongly correlated with the reliability of VLM. Prior entropy-based attacks maximize uncertainty at all decoding steps, implicitly assuming that every token contributes equally to generation instability. We show instead that a small fraction (about 20%) of high-entropy tokens, i.e., critical decision points in autoregressive generation, disproportionately governs output trajectories. By concentrating adversarial perturbations on these positions, we achieve semantic degradation comparable to global methods while using substantially smaller budgets. More importantly, across multiple representative VLMs, such selective attacks convert 35-49% of benign outputs into harmful ones, exposing a more critical safety risk. Remarkably, these vulnerable high-entropy forks recur across architecturally diverse VLMs, enabling feasible transferability (17-26% harmful rates on unseen targets). Motivated by these findings, we propose Entropy-bank Guided Adversarial attacks (EGA), which achieves competitive attack success rates (93-95%) alongside high harmful conversion, thereby revealing new weaknesses in current VLM safety mechanisms.
Abstract:Unified hyperspectral image (HSI) restoration aims to recover various degraded HSIs using a single model, offering great practical value. However, existing methods often depend on explicit degradation priors (e.g., degradation labels) as prompts to guide restoration, which are difficult to obtain due to complex and mixed degradations in real-world scenarios. To address this challenge, we propose a Degradation-Aware Metric Prompting (DAMP) framework. Instead of relying on predefined degradation priors, we design spatial-spectral degradation metrics to continuously quantify multi-dimensional degradations, serving as Degradation Prompts (DP). These DP enable the model to capture cross-task similarities in degradation distributions and enhance shared feature learning. Furthermore, we introduce a Spatial-Spectral Adaptive Module (SSAM) that dynamically modulates spatial and spectral feature extraction through learnable parameters. By integrating SSAM as experts within a Mixture-of-Experts architecture, and using DP as the gating router, the framework enables adaptive, efficient, and robust restoration under diverse, mixed, or unseen degradations. Extensive experiments on natural and remote sensing HSI datasets show that DAMP achieves state-of-the-art performance and demonstrates exceptional generalization capability. Code is publicly available at https://github.com/MiliLab/DAMP.
Abstract:Synthetic Aperture Radar (SAR) imagery plays a critical role in all-weather, day-and-night remote sensing applications. However, existing SAR-oriented deep learning is constrained by data scarcity, while the physically grounded speckle noise in SAR imagery further hampers fine-grained semantic representation learning. To address these challenges, we propose SARMAE, a Noise-Aware Masked Autoencoder for self-supervised SAR representation learning. Specifically, we construct SAR-1M, the first million-scale SAR dataset, with additional paired optical images, to enable large-scale pre-training. Building upon this, we design Speckle-Aware Representation Enhancement (SARE), which injects SAR-specific speckle noise into masked autoencoders to facilitate noise-aware and robust representation learning. Furthermore, we introduce Semantic Anchor Representation Constraint (SARC), which leverages paired optical priors to align SAR features and ensure semantic consistency. Extensive experiments across multiple SAR datasets demonstrate that SARMAE achieves state-of-the-art performance on classification, detection, and segmentation tasks. Code and models will be available at https://github.com/MiliLab/SARMAE.
Abstract:Accurate channel state information (CSI) acquisition is essential for modern wireless systems, which becomes increasingly difficult under large antenna arrays, strict pilot overhead constraints, and diverse deployment environments. Existing artificial intelligence-based solutions often lack robustness and fail to generalize across scenarios. To address this limitation, this paper introduces a predictive-foundation-model-based channel estimation framework that enables accurate, low-overhead, and generalizable CSI acquisition. The proposed framework employs a predictive foundation model trained on large-scale cross-domain CSI data to extract universal channel representations and provide predictive priors with strong cross-scenario transferability. A pilot processing network based on a vision transformer architecture is further designed to capture spatial, temporal, and frequency correlations from pilot observations. An efficient fusion mechanism integrates predictive priors with real-time measurements, enabling reliable CSI reconstruction even under sparse or noisy conditions. Extensive evaluations across diverse configurations demonstrate that the proposed estimator significantly outperforms both classical and data-driven baselines in accuracy, robustness, and generalization capability.
Abstract:Autoregressive video diffusion models (AR-VDMs) show strong promise as scalable alternatives to bidirectional VDMs, enabling real-time and interactive applications. Yet there remains room for improvement in their sample fidelity. A promising solution is inference-time alignment, which optimizes the noise space to improve sample fidelity without updating model parameters. Yet, optimization- or search-based methods are computationally impractical for AR-VDMs. Recent text-to-image (T2I) works address this via feedforward noise refiners that modulate sampled noises in a single forward pass. Can such noise refiners be extended to AR-VDMs? We identify the failure of naively extending T2I noise refiners to AR-VDMs and propose AutoRefiner-a noise refiner tailored for AR-VDMs, with two key designs: pathwise noise refinement and a reflective KV-cache. Experiments demonstrate that AutoRefiner serves as an efficient plug-in for AR-VDMs, effectively enhancing sample fidelity by refining noise along stochastic denoising paths.
Abstract:Medical images exhibit latent anatomical groupings, such as organs, tissues, and pathological regions, that standard Vision Transformers (ViTs) fail to exploit. While recent work like SBM-Transformer attempts to incorporate such structures through stochastic binary masking, they suffer from non-differentiability, training instability, and the inability to model complex community structure. We present DCMM-Transformer, a novel ViT architecture for medical image analysis that incorporates a Degree-Corrected Mixed-Membership (DCMM) model as an additive bias in self-attention. Unlike prior approaches that rely on multiplicative masking and binary sampling, our method introduces community structure and degree heterogeneity in a fully differentiable and interpretable manner. Comprehensive experiments across diverse medical imaging datasets, including brain, chest, breast, and ocular modalities, demonstrate the superior performance and generalizability of the proposed approach. Furthermore, the learned group structure and structured attention modulation substantially enhance interpretability by yielding attention maps that are anatomically meaningful and semantically coherent.
Abstract:Diffusion bridge models establish probabilistic paths between arbitrary paired distributions and exhibit great potential for universal image restoration. Most existing methods merely treat them as simple variants of stochastic interpolants, lacking a unified analytical perspective. Besides, they indiscriminately reconstruct images through global noise injection and removal, inevitably distorting undegraded regions due to imperfect reconstruction. To address these challenges, we propose the Residual Diffusion Bridge Model (RDBM). Specifically, we theoretically reformulate the stochastic differential equations of generalized diffusion bridge and derive the analytical formulas of its forward and reverse processes. Crucially, we leverage the residuals from given distributions to modulate the noise injection and removal, enabling adaptive restoration of degraded regions while preserving intact others. Moreover, we unravel the fundamental mathematical essence of existing bridge models, all of which are special cases of RDBM and empirically demonstrate the optimality of our proposed models. Extensive experiments are conducted to demonstrate the state-of-the-art performance of our method both qualitatively and quantitatively across diverse image restoration tasks. Code is publicly available at https://github.com/MiliLab/RDBM.
Abstract:In this report, we propose PaddleOCR-VL, a SOTA and resource-efficient model tailored for document parsing. Its core component is PaddleOCR-VL-0.9B, a compact yet powerful vision-language model (VLM) that integrates a NaViT-style dynamic resolution visual encoder with the ERNIE-4.5-0.3B language model to enable accurate element recognition. This innovative model efficiently supports 109 languages and excels in recognizing complex elements (e.g., text, tables, formulas, and charts), while maintaining minimal resource consumption. Through comprehensive evaluations on widely used public benchmarks and in-house benchmarks, PaddleOCR-VL achieves SOTA performance in both page-level document parsing and element-level recognition. It significantly outperforms existing solutions, exhibits strong competitiveness against top-tier VLMs, and delivers fast inference speeds. These strengths make it highly suitable for practical deployment in real-world scenarios.




Abstract:Prompting has emerged as a practical way to adapt frozen vision-language models (VLMs) for video anomaly detection (VAD). Yet, existing prompts are often overly abstract, overlooking the fine-grained human-object interactions or action semantics that define complex anomalies in surveillance videos. We propose ASK-Hint, a structured prompting framework that leverages action-centric knowledge to elicit more accurate and interpretable reasoning from frozen VLMs. Our approach organizes prompts into semantically coherent groups (e.g. violence, property crimes, public safety) and formulates fine-grained guiding questions that align model predictions with discriminative visual cues. Extensive experiments on UCF-Crime and XD-Violence show that ASK-Hint consistently improves AUC over prior baselines, achieving state-of-the-art performance compared to both fine-tuned and training-free methods. Beyond accuracy, our framework provides interpretable reasoning traces towards anomaly and demonstrates strong generalization across datasets and VLM backbones. These results highlight the critical role of prompt granularity and establish ASK-Hint as a new training-free and generalizable solution for explainable video anomaly detection.
Abstract:The multiple-input multiple-output (MIMO) receiver processing is a key technology for current and next-generation wireless communications. However, it faces significant challenges related to complexity and scalability as the number of antennas increases. Artificial intelligence (AI), a cornerstone of next-generation wireless networks, offers considerable potential for addressing these challenges. This paper proposes an AI-driven, universal MIMO receiver architecture based on Markov chain Monte Carlo (MCMC) techniques. Unlike existing AI-based methods that treat receiver processing as a black box, our MCMC-based approach functions as a generic Bayesian computing engine applicable to various processing tasks, including channel estimation, symbol detection, and channel decoding. This method enhances the interpretability, scalability, and flexibility of receivers in diverse scenarios. Furthermore, the proposed approach integrates these tasks into a unified probabilistic framework, thereby enabling overall performance optimization. This unified framework can also be seamlessly combined with data-driven learning methods to facilitate the development of fully intelligent communication receivers.