With the emergence of Large Language Models (LLMs), there has been a significant improvement in the programming capabilities of models, attracting growing attention from researchers. We propose CodeApex, a bilingual benchmark dataset focusing on the programming comprehension and code generation abilities of LLMs. CodeApex comprises three types of multiple-choice questions: conceptual understanding, commonsense reasoning, and multi-hop reasoning, designed to evaluate LLMs on programming comprehension tasks. Additionally, CodeApex utilizes algorithmic questions and corresponding test cases to assess the code quality generated by LLMs. We evaluate 14 state-of-the-art LLMs, including both general-purpose and specialized models. GPT exhibits the best programming capabilities, achieving approximate accuracies of 50% and 56% on the two tasks, respectively. There is still significant room for improvement in programming tasks. We hope that CodeApex can serve as a reference for evaluating the coding capabilities of LLMs, further promoting their development and growth. Datasets are released at https://github.com/APEXLAB/CodeApex.git. CodeApex submission website is https://apex.sjtu.edu.cn/codeapex/.
With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently. In this paper, we focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks. First and foremost, we identify and formulate the lifelong sequential behavior incomprehension problem for LLMs in recommendation domains, i.e., LLMs fail to extract useful information from a textual context of long user behavior sequence, even if the length of context is far from reaching the context limitation of LLMs. To address such an issue and improve the recommendation performance of LLMs, we propose a novel framework, namely Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings. For zero-shot recommendation, we perform semantic user behavior retrieval (SUBR) to improve the data quality of testing samples, which greatly reduces the difficulty for LLMs to extract the essential knowledge from user behavior sequences. As for few-shot recommendation, we further design retrieval-enhanced instruction tuning (ReiT) by adopting SUBR as a data augmentation technique for training samples. Specifically, we develop a mixed training dataset consisting of both the original data samples and their retrieval-enhanced counterparts. We conduct extensive experiments on a real-world public dataset (i.e., MovieLens-1M) to demonstrate the superiority of ReLLa compared with existing baseline models, as well as its capability for lifelong sequential behavior comprehension.
From pre-trained language model (PLM) to large language model (LLM), the field of natural language processing (NLP) has witnessed steep performance gains and wide practical uses. The evaluation of a research field guides its direction of improvement. However, LLMs are extremely hard to thoroughly evaluate for two reasons. First of all, traditional NLP tasks become inadequate due to the excellent performance of LLM. Secondly, existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios. To tackle these problems, existing works proposed various benchmarks to better evaluate LLMs. To clarify the numerous evaluation tasks in both academia and industry, we investigate multiple papers concerning LLM evaluations. We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety. For every competency, we introduce its definition, corresponding benchmarks, and metrics. Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system. Finally, we give our suggestions on the future direction of LLM's evaluation.
Learning-to-rank is a core technique in the top-N recommendation task, where an ideal ranker would be a mapping from an item set to an arrangement (a.k.a. permutation). Most existing solutions fall in the paradigm of probabilistic ranking principle (PRP), i.e., first score each item in the candidate set and then perform a sort operation to generate the top ranking list. However, these approaches neglect the contextual dependence among candidate items during individual scoring, and the sort operation is non-differentiable. To bypass the above issues, we propose Set-To-Arrangement Ranking (STARank), a new framework directly generates the permutations of the candidate items without the need for individually scoring and sort operations; and is end-to-end differentiable. As a result, STARank can operate when only the ground-truth permutations are accessible without requiring access to the ground-truth relevance scores for items. For this purpose, STARank first reads the candidate items in the context of the user browsing history, whose representations are fed into a Plackett-Luce module to arrange the given items into a list. To effectively utilize the given ground-truth permutations for supervising STARank, we leverage the internal consistency property of Plackett-Luce models to derive a computationally efficient list-wise loss. Experimental comparisons against 9 the state-of-the-art methods on 2 learning-to-rank benchmark datasets and 3 top-N real-world recommendation datasets demonstrate the superiority of STARank in terms of conventional ranking metrics. Notice that these ranking metrics do not consider the effects of the contextual dependence among the items in the list, we design a new family of simulation-based ranking metrics, where existing metrics can be regarded as special cases. STARank can consistently achieve better performance in terms of PBM and UBM simulation-based metrics.
With the widespread application of personalized online services, click-through rate (CTR) prediction has received more and more attention and research. The most prominent features of CTR prediction are its multi-field categorical data format, and vast and daily-growing data volume. The large capacity of neural models helps digest such massive amounts of data under the supervised learning paradigm, yet they fail to utilize the substantial data to its full potential, since the 1-bit click signal is not sufficient to guide the model to learn capable representations of features and instances. The self-supervised learning paradigm provides a more promising pretrain-finetune solution to better exploit the large amount of user click logs, and learn more generalized and effective representations. However, self-supervised learning for CTR prediction is still an open question, since current works on this line are only preliminary and rudimentary. To this end, we propose a Model-agnostic pretraining (MAP) framework that applies feature corruption and recovery on multi-field categorical data, and more specifically, we derive two practical algorithms: masked feature prediction (MFP) and replaced feature detection (RFD). MFP digs into feature interactions within each instance through masking and predicting a small portion of input features, and introduces noise contrastive estimation (NCE) to handle large feature spaces. RFD further turns MFP into a binary classification mode through replacing and detecting changes in input features, making it even simpler and more effective for CTR pretraining. Our extensive experiments on two real-world large-scale datasets (i.e., Avazu, Criteo) demonstrate the advantages of these two methods on several strong backbones (e.g., DCNv2, DeepFM), and achieve new state-of-the-art performance in terms of both effectiveness and efficiency for CTR prediction.
The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop's outcomes, including the rethinking of IR's core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.
Order execution is a fundamental task in quantitative finance, aiming at finishing acquisition or liquidation for a number of trading orders of the specific assets. Recent advance in model-free reinforcement learning (RL) provides a data-driven solution to the order execution problem. However, the existing works always optimize execution for an individual order, overlooking the practice that multiple orders are specified to execute simultaneously, resulting in suboptimality and bias. In this paper, we first present a multi-agent RL (MARL) method for multi-order execution considering practical constraints. Specifically, we treat every agent as an individual operator to trade one specific order, while keeping communicating with each other and collaborating for maximizing the overall profits. Nevertheless, the existing MARL algorithms often incorporate communication among agents by exchanging only the information of their partial observations, which is inefficient in complicated financial market. To improve collaboration, we then propose a learnable multi-round communication protocol, for the agents communicating the intended actions with each other and refining accordingly. It is optimized through a novel action value attribution method which is provably consistent with the original learning objective yet more efficient. The experiments on the data from two real-world markets have illustrated superior performance with significantly better collaboration effectiveness achieved by our method.
Due to the nature of risk management in learning applicable policies, risk-sensitive reinforcement learning (RSRL) has been realized as an important direction. RSRL is usually achieved by learning risk-sensitive objectives characterized by various risk measures, under the framework of distributional reinforcement learning. However, it remains unclear if the distributional Bellman operator properly optimizes the RSRL objective in the sense of risk measures. In this paper, we prove that the existing RSRL methods do not achieve unbiased optimization and can not guarantee optimality or even improvements regarding risk measures over accumulated return distributions. To remedy this issue, we further propose a novel algorithm, namely Trajectory Q-Learning (TQL), for RSRL problems with provable convergence to the optimal policy. Based on our new learning architecture, we are free to introduce a general and practical implementation for different risk measures to learn disparate risk-sensitive policies. In the experiments, we verify the learnability of our algorithm and show how our method effectively achieves better performances toward risk-sensitive objectives.