Abstract:Cell instance segmentation is critical to analyzing biomedical images, yet accurately distinguishing tightly touching cells remains a persistent challenge. Existing instance segmentation frameworks, including detection-based, contour-based, and distance mapping-based approaches, have made significant progress, but balancing model performance with computational efficiency remains an open problem. In this paper, we propose a novel cell instance segmentation method inspired by the four-color theorem. By conceptualizing cells as countries and tissues as oceans, we introduce a four-color encoding scheme that ensures adjacent instances receive distinct labels. This reformulation transforms instance segmentation into a constrained semantic segmentation problem with only four predicted classes, substantially simplifying the instance differentiation process. To solve the training instability caused by the non-uniqueness of four-color encoding, we design an asymptotic training strategy and encoding transformation method. Extensive experiments on various modes demonstrate our approach achieves state-of-the-art performance. The code is available at https://github.com/zhangye-zoe/FCIS.
Abstract:Video temporal understanding is crucial for multimodal large language models (MLLMs) to reason over events in videos. Despite recent advances in general video understanding, current MLLMs still struggle with fine-grained temporal reasoning. While reinforcement learning (RL) has been explored to address this issue recently, existing RL approaches remain limited in effectiveness. In this work, we propose MUSEG, a novel RL-based method that enhances temporal understanding by introducing timestamp-aware multi-segment grounding. MUSEG enables MLLMs to align queries with multiple relevant video segments, promoting more comprehensive temporal reasoning. To facilitate effective learning, we design a customized RL training recipe with phased rewards that progressively guides the model toward temporally grounded reasoning. Extensive experiments on temporal grounding and time-sensitive video QA tasks demonstrate that MUSEG significantly outperforms existing methods and generalizes well across diverse temporal understanding scenarios. View our project at https://github.com/THUNLP-MT/MUSEG.
Abstract:Large language model (LLM) agents have shown impressive reasoning capabilities in interactive decision-making tasks. These agents interact with environment through intermediate interfaces, such as predefined action spaces and interaction rules, which mediate the perception and action. However, mismatches often happen between the internal expectations of the agent regarding the influence of its issued actions and the actual state transitions in the environment, a phenomenon referred to as \textbf{agent-environment misalignment}. While prior work has invested substantially in improving agent strategies and environment design, the critical role of the interface still remains underexplored. In this work, we empirically demonstrate that agent-environment misalignment poses a significant bottleneck to agent performance. To mitigate this issue, we propose \textbf{ALIGN}, an \underline{A}uto-A\underline{l}igned \underline{I}nterface \underline{G}e\underline{n}eration framework that alleviates the misalignment by enriching the interface. Specifically, the ALIGN-generated interface enhances both the static information of the environment and the step-wise observations returned to the agent. Implemented as a lightweight wrapper, this interface achieves the alignment without modifying either the agent logic or the environment code. Experiments across multiple domains including embodied tasks, web navigation and tool-use, show consistent performance improvements, with up to a 45.67\% success rate improvement observed in ALFWorld. Meanwhile, ALIGN-generated interface can generalize across different agent architectures and LLM backbones without interface regeneration. Code and experimental results are available at https://github.com/THUNLP-MT/ALIGN.
Abstract:Images usually convey richer detail than text, but often include redundant information which potentially downgrades multimodal reasoning performance. When faced with lengthy or complex messages, humans tend to employ abstract thinking to convert them into simple and concise abstracts. Inspired by this cognitive strategy, we introduce Visual Abstract Thinking (VAT), a novel thinking paradigm that prompts Multimodal Large Language Models (MLLMs) with visual abstract instead of explicit verbal thoughts or elaborate guidance, permitting a more concentrated visual reasoning mechanism. Explicit thinking, such as Chain-of-thought (CoT) or tool-augmented approaches, increases the complexity of reasoning process via inserting verbose intermediate steps, external knowledge or visual information. In contrast, VAT reduces redundant visual information and encourages models to focus their reasoning on more essential visual elements. Experimental results show that VAT consistently empowers different models, and achieves an average gain of 17% over GPT-4o baseline by employing diverse types of visual abstracts, demonstrating that VAT can enhance visual reasoning abilities for MLLMs regarding conceptual, structural and relational reasoning tasks. VAT is also compatible with CoT in knowledge-intensive multimodal reasoning tasks. These findings highlight the effectiveness of visual reasoning via abstract thinking and encourage further exploration of more diverse reasoning paradigms from the perspective of human cognition.
Abstract:Diffusion-based scene text synthesis has progressed rapidly, yet existing methods commonly rely on additional visual conditioning modules and require large-scale annotated data to support multilingual generation. In this work, we revisit the necessity of complex auxiliary modules and further explore an approach that simultaneously ensures glyph accuracy and achieves high-fidelity scene integration, by leveraging diffusion models' inherent capabilities for contextual reasoning. To this end, we introduce TextFlux, a DiT-based framework that enables multilingual scene text synthesis. The advantages of TextFlux can be summarized as follows: (1) OCR-free model architecture. TextFlux eliminates the need for OCR encoders (additional visual conditioning modules) that are specifically used to extract visual text-related features. (2) Strong multilingual scalability. TextFlux is effective in low-resource multilingual settings, and achieves strong performance in newly added languages with fewer than 1,000 samples. (3) Streamlined training setup. TextFlux is trained with only 1% of the training data required by competing methods. (4) Controllable multi-line text generation. TextFlux offers flexible multi-line synthesis with precise line-level control, outperforming methods restricted to single-line or rigid layouts. Extensive experiments and visualizations demonstrate that TextFlux outperforms previous methods in both qualitative and quantitative evaluations.
Abstract:In this article, we investigate the robust beamforming design for a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided downlink rate-splitting multiple access (RSMA) communication system, where both transceivers and STAR-RIS suffer from the impact of hardware impairments (HWI). A base station (BS) is deployed to transmit messages concurrently to multiple users, utilizing a STAR-RIS to improve communication quality and expand user coverage. We aim to maximize the achievable sum rate of the users while ensuring the constraints of transmit power, STAR-RIS coefficients, and the actual rate of the common stream for all users. To solve this challenging high-coupling and non-convexity problem, we adopt a fractional programming (FP)-based alternating optimization (AO) approach, where each sub-problem is addressed via semidefinite relaxation (SDR) and successive convex approximation (SCA) methods. Numerical results demonstrate that the proposed scheme outperforms other multiple access schemes and conventional passive RIS in terms of the achievable sum rate. Additionally, considering the HWI of the transceiver and STAR-RIS makes our algorithm more robust than when such considerations are not included.
Abstract:Surgical scene segmentation is critical in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, referring surgical segmentation is emerging, given its advantage of providing surgeons with an interactive experience to segment the target object. However, existing methods are limited by low efficiency and short-term tracking, hindering their applicability in complex real-world surgical scenarios. In this paper, we introduce ReSurgSAM2, a two-stage surgical referring segmentation framework that leverages Segment Anything Model 2 to perform text-referred target detection, followed by tracking with reliable initial frame identification and diversity-driven long-term memory. For the detection stage, we propose a cross-modal spatial-temporal Mamba to generate precise detection and segmentation results. Based on these results, our credible initial frame selection strategy identifies the reliable frame for the subsequent tracking. Upon selecting the initial frame, our method transitions to the tracking stage, where it incorporates a diversity-driven memory mechanism that maintains a credible and diverse memory bank, ensuring consistent long-term tracking. Extensive experiments demonstrate that ReSurgSAM2 achieves substantial improvements in accuracy and efficiency compared to existing methods, operating in real-time at 61.2 FPS. Our code and datasets will be available at https://github.com/jinlab-imvr/ReSurgSAM2.
Abstract:Recent work has demonstrated the plausibility of frontier AI models scheming -- knowingly and covertly pursuing an objective misaligned with its developer's intentions. Such behavior could be very hard to detect, and if present in future advanced systems, could pose severe loss of control risk. It is therefore important for AI developers to rule out harm from scheming prior to model deployment. In this paper, we present a suite of scheming reasoning evaluations measuring two types of reasoning capabilities that we believe are prerequisites for successful scheming: First, we propose five evaluations of ability to reason about and circumvent oversight (stealth). Second, we present eleven evaluations for measuring a model's ability to instrumentally reason about itself, its environment and its deployment (situational awareness). We demonstrate how these evaluations can be used as part of a scheming inability safety case: a model that does not succeed on these evaluations is almost certainly incapable of causing severe harm via scheming in real deployment. We run our evaluations on current frontier models and find that none of them show concerning levels of either situational awareness or stealth.
Abstract:Vision-Language Models (VLMs) have recently witnessed significant progress in visual comprehension. As the permitting length of image context grows, VLMs can now comprehend a broader range of views and spaces. Current benchmarks provide insightful analysis of VLMs in tasks involving complex visual instructions following, multi-image understanding and spatial reasoning. However, they usually focus on spatially irrelevant images or discrete images captured from varied viewpoints. The compositional characteristic of images captured from a static viewpoint remains underestimated. We term this characteristic as Continuous Space Perception. When observing a scene from a static viewpoint while shifting orientations, it produces a series of spatially continuous images, enabling the reconstruction of the entire space. In this paper, we present CoSpace, a multi-image visual understanding benchmark designed to assess the Continuous Space perception ability for VLMs. CoSpace contains 2,918 images and 1,626 question-answer pairs, covering seven types of tasks. We conduct evaluation across 19 proprietary and open-source VLMs. Results reveal that there exist pitfalls on the continuous space perception ability for most of the evaluated models, including proprietary ones. Interestingly, we find that the main discrepancy between open-source and proprietary models lies not in accuracy but in the consistency of responses. We believe that enhancing the ability of continuous space perception is essential for VLMs to perform effectively in real-world tasks and encourage further research to advance this capability.
Abstract:Localization is one of the core parts of modern robotics. Classic localization methods typically follow the retrieve-then-register paradigm, achieving remarkable success. Recently, the emergence of end-to-end localization approaches has offered distinct advantages, including a streamlined system architecture and the elimination of the need to store extensive map data. Although these methods have demonstrated promising results, current end-to-end localization approaches still face limitations in robustness and accuracy. Bird's-Eye-View (BEV) image is one of the most widely adopted data representations in autonomous driving. It significantly reduces data complexity while preserving spatial structure and scale consistency, making it an ideal representation for localization tasks. However, research on BEV-based end-to-end localization remains notably insufficient. To fill this gap, we propose BEVDiffLoc, a novel framework that formulates LiDAR localization as a conditional generation of poses. Leveraging the properties of BEV, we first introduce a specific data augmentation method to significantly enhance the diversity of input data. Then, the Maximum Feature Aggregation Module and Vision Transformer are employed to learn robust features while maintaining robustness against significant rotational view variations. Finally, we incorporate a diffusion model that iteratively refines the learned features to recover the absolute pose. Extensive experiments on the Oxford Radar RobotCar and NCLT datasets demonstrate that BEVDiffLoc outperforms the baseline methods. Our code is available at https://github.com/nubot-nudt/BEVDiffLoc.