Shanghai Jiaotong University
Abstract:In this paper, we propose a novel hierarchical framework for robot navigation in dynamic environments with heterogeneous constraints. Our approach leverages a graph neural network trained via reinforcement learning (RL) to efficiently estimate the robot's cost-to-go, formulated as local goal recommendations. A spatio-temporal path-searching module, which accounts for kinematic constraints, is then employed to generate a reference trajectory to facilitate solving the non-convex optimization problem used for explicit constraint enforcement. More importantly, we introduce an incremental action-masking mechanism and a privileged learning strategy, enabling end-to-end training of the proposed planner. Both simulation and real-world experiments demonstrate that the proposed method effectively addresses local planning in complex dynamic environments, achieving state-of-the-art (SOTA) performance. Compared with existing learning-optimization hybrid methods, our approach eliminates the dependency on high-fidelity simulation environments, offering significant advantages in computational efficiency and training scalability. The code will be released as open-source upon acceptance of the paper.
Abstract:As large language models (LLMs) are increasingly deployed in healthcare, ensuring their safety, particularly within collaborative multi-agent configurations, is paramount. In this paper we introduce MedSentry, a benchmark comprising 5 000 adversarial medical prompts spanning 25 threat categories with 100 subthemes. Coupled with this dataset, we develop an end-to-end attack-defense evaluation pipeline to systematically analyze how four representative multi-agent topologies (Layers, SharedPool, Centralized, and Decentralized) withstand attacks from 'dark-personality' agents. Our findings reveal critical differences in how these architectures handle information contamination and maintain robust decision-making, exposing their underlying vulnerability mechanisms. For instance, SharedPool's open information sharing makes it highly susceptible, whereas Decentralized architectures exhibit greater resilience thanks to inherent redundancy and isolation. To mitigate these risks, we propose a personality-scale detection and correction mechanism that identifies and rehabilitates malicious agents, restoring system safety to near-baseline levels. MedSentry thus furnishes both a rigorous evaluation framework and practical defense strategies that guide the design of safer LLM-based multi-agent systems in medical domains.
Abstract:Reasoning with tabular data holds increasing importance in modern applications, yet comprehensive evaluation methodologies for reasoning-intensive Table Question Answering (QA) tasks remain nascent. Existing research is constrained by two primary bottlenecks: 1) Reliance on costly manually annotated real-world data, which is difficult to cover complex reasoning scenarios; 2) The heterogeneity of table structures hinders systematic analysis of the intrinsic mechanisms behind the underperformance of LLMs, especially in reasoning-intensive tasks. To address these issues, we propose an automated generation pipeline AutoT2T that transforms mathematical word problems into table-based reasoning tasks, eliminating the need for manual annotation. The pipeline can generate multiple variants of a table for the same reasoning problem, including noisy versions to support robustness evaluation. Based on this, we construct a new benchmark TabularGSM, which systematically spans a range of table complexities and trap problems. Experimental analyses through AutoT2T and TabularGSM reveal that the tight coupling between reasoning and retrieval or identification processes is a key factor underlying the failure of LLMs in complex Table QA tasks. This highlights the necessity for models to develop synergistic reasoning capabilities in order to perform effectively in complex Table QA tasks.
Abstract:Our research reveals a new privacy risk associated with the vision-language model (VLM) agentic framework: the ability to infer sensitive attributes (e.g., age and health information) and even abstract ones (e.g., personality and social traits) from a set of personal images, which we term "image private attribute profiling." This threat is particularly severe given that modern apps can easily access users' photo albums, and inference from image sets enables models to exploit inter-image relations for more sophisticated profiling. However, two main challenges hinder our understanding of how well VLMs can profile an individual from a few personal photos: (1) the lack of benchmark datasets with multi-image annotations for private attributes, and (2) the limited ability of current multimodal large language models (MLLMs) to infer abstract attributes from large image collections. In this work, we construct PAPI, the largest dataset for studying private attribute profiling in personal images, comprising 2,510 images from 251 individuals with 3,012 annotated privacy attributes. We also propose HolmesEye, a hybrid agentic framework that combines VLMs and LLMs to enhance privacy inference. HolmesEye uses VLMs to extract both intra-image and inter-image information and LLMs to guide the inference process as well as consolidate the results through forensic analysis, overcoming existing limitations in long-context visual reasoning. Experiments reveal that HolmesEye achieves a 10.8% improvement in average accuracy over state-of-the-art baselines and surpasses human-level performance by 15.0% in predicting abstract attributes. This work highlights the urgency of addressing privacy risks in image-based profiling and offers both a new dataset and an advanced framework to guide future research in this area.
Abstract:The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.
Abstract:This paper reviews the NTIRE 2025 Efficient Burst HDR and Restoration Challenge, which aims to advance efficient multi-frame high dynamic range (HDR) and restoration techniques. The challenge is based on a novel RAW multi-frame fusion dataset, comprising nine noisy and misaligned RAW frames with various exposure levels per scene. Participants were tasked with developing solutions capable of effectively fusing these frames while adhering to strict efficiency constraints: fewer than 30 million model parameters and a computational budget under 4.0 trillion FLOPs. A total of 217 participants registered, with six teams finally submitting valid solutions. The top-performing approach achieved a PSNR of 43.22 dB, showcasing the potential of novel methods in this domain. This paper provides a comprehensive overview of the challenge, compares the proposed solutions, and serves as a valuable reference for researchers and practitioners in efficient burst HDR and restoration.
Abstract:Currently, the memory mechanism has been widely and successfully exploited in online text-to-image (T2I) generation systems ($e.g.$, DALL$\cdot$E 3) for alleviating the growing tokenization burden and capturing key information in multi-turn interactions. Despite its practicality, its security analyses have fallen far behind. In this paper, we reveal that this mechanism exacerbates the risk of jailbreak attacks. Different from previous attacks that fuse the unsafe target prompt into one ultimate adversarial prompt, which can be easily detected or may generate non-unsafe images due to under- or over-optimization, we propose Inception, the first multi-turn jailbreak attack against the memory mechanism in real-world text-to-image generation systems. Inception embeds the malice at the inception of the chat session turn by turn, leveraging the mechanism that T2I generation systems retrieve key information in their memory. Specifically, Inception mainly consists of two modules. It first segments the unsafe prompt into chunks, which are subsequently fed to the system in multiple turns, serving as pseudo-gradients for directive optimization. Specifically, we develop a series of segmentation policies that ensure the images generated are semantically consistent with the target prompt. Secondly, after segmentation, to overcome the challenge of the inseparability of minimum unsafe words, we propose recursion, a strategy that makes minimum unsafe words subdivisible. Collectively, segmentation and recursion ensure that all the request prompts are benign but can lead to malicious outcomes. We conduct experiments on the real-world text-to-image generation system ($i.e.$, DALL$\cdot$E 3) to validate the effectiveness of Inception. The results indicate that Inception surpasses the state-of-the-art by a 14\% margin in attack success rate.
Abstract:This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
Abstract:While deep learning methods have achieved notable progress in shadow removal, many existing approaches rely on shadow masks that are difficult to obtain, limiting their generalization to real-world scenes. In this work, we propose ReHiT, an efficient mask-free shadow removal framework based on a hybrid CNN-Transformer architecture guided by Retinex theory. We first introduce a dual-branch pipeline to separately model reflectance and illumination components, and each is restored by our developed Illumination-Guided Hybrid CNN-Transformer (IG-HCT) module. Second, besides the CNN-based blocks that are capable of learning residual dense features and performing multi-scale semantic fusion, multi-scale semantic fusion, we develop the Illumination-Guided Histogram Transformer Block (IGHB) to effectively handle non-uniform illumination and spatially complex shadows. Extensive experiments on several benchmark datasets validate the effectiveness of our approach over existing mask-free methods. Trained solely on the NTIRE 2025 Shadow Removal Challenge dataset, our solution delivers competitive results with one of the smallest parameter sizes and fastest inference speeds among top-ranked entries, highlighting its applicability for real-world applications with limited computational resources. The code is available at https://github.com/dongw22/oath.
Abstract:Current Low-light Image Enhancement (LLIE) techniques predominantly rely on either direct Low-Light (LL) to Normal-Light (NL) mappings or guidance from semantic features or illumination maps. Nonetheless, the intrinsic ill-posedness of LLIE and the difficulty in retrieving robust semantics from heavily corrupted images hinder their effectiveness in extremely low-light environments. To tackle this challenge, we present SG-LLIE, a new multi-scale CNN-Transformer hybrid framework guided by structure priors. Different from employing pre-trained models for the extraction of semantics or illumination maps, we choose to extract robust structure priors based on illumination-invariant edge detectors. Moreover, we develop a CNN-Transformer Hybrid Structure-Guided Feature Extractor (HSGFE) module at each scale with in the UNet encoder-decoder architecture. Besides the CNN blocks which excels in multi-scale feature extraction and fusion, we introduce a Structure-Guided Transformer Block (SGTB) in each HSGFE that incorporates structural priors to modulate the enhancement process. Extensive experiments show that our method achieves state-of-the-art performance on several LLIE benchmarks in both quantitative metrics and visual quality. Our solution ranks second in the NTIRE 2025 Low-Light Enhancement Challenge. Code is released at https://github.com/minyan8/imagine.