Abstract:In this paper, we propose a novel hierarchical framework for robot navigation in dynamic environments with heterogeneous constraints. Our approach leverages a graph neural network trained via reinforcement learning (RL) to efficiently estimate the robot's cost-to-go, formulated as local goal recommendations. A spatio-temporal path-searching module, which accounts for kinematic constraints, is then employed to generate a reference trajectory to facilitate solving the non-convex optimization problem used for explicit constraint enforcement. More importantly, we introduce an incremental action-masking mechanism and a privileged learning strategy, enabling end-to-end training of the proposed planner. Both simulation and real-world experiments demonstrate that the proposed method effectively addresses local planning in complex dynamic environments, achieving state-of-the-art (SOTA) performance. Compared with existing learning-optimization hybrid methods, our approach eliminates the dependency on high-fidelity simulation environments, offering significant advantages in computational efficiency and training scalability. The code will be released as open-source upon acceptance of the paper.
Abstract:Analyzing and forecasting trajectories of agents like pedestrians plays a pivotal role for embodied intelligent applications. The inherent indeterminacy of human behavior and complex social interaction among a rich variety of agents make this task more challenging than common time-series forecasting. In this letter, we aim to explore a distinct formulation for multi-agent trajectory prediction framework. Specifically, we proposed a patching-based temporal feature extraction module and a graph-based social feature extraction module, enabling effective feature extraction and cross-scenario generalization. Moreover, we reassess the role of social interaction and present a novel method based on explicit modality modulation to integrate temporal and social features, thereby constructing an efficient single-stage inference pipeline. Results on public benchmark datasets demonstrate the superior performance of our model compared with the state-of-the-art methods. The code is available at: github.com/TIB-K330/pmm-net.