Abstract:The success of Large Language Models (LLMs) hinges on the stable training of deep Transformer architectures. A critical design choice is the placement of normalization layers, leading to a fundamental trade-off: the ``PreNorm'' architecture ensures training stability at the cost of potential performance degradation in deep models, while the ``PostNorm'' architecture offers strong performance but suffers from severe training instability. In this work, we propose SpanNorm, a novel technique designed to resolve this dilemma by integrating the strengths of both paradigms. Structurally, SpanNorm establishes a clean residual connection that spans the entire transformer block to stabilize signal propagation, while employing a PostNorm-style computation that normalizes the aggregated output to enhance model performance. We provide a theoretical analysis demonstrating that SpanNorm, combined with a principled scaling strategy, maintains bounded signal variance throughout the network, preventing the gradient issues that plague PostNorm models, and also alleviating the representation collapse of PreNorm. Empirically, SpanNorm consistently outperforms standard normalization schemes in both dense and Mixture-of-Experts (MoE) scenarios, paving the way for more powerful and stable Transformer architectures.
Abstract:Classifier-free guidance (CFG) is a widely used technique for controllable generation in diffusion and flow-based models. Despite its empirical success, CFG relies on a heuristic linear extrapolation that is often sensitive to the guidance scale. In this work, we provide a principled interpretation of CFG through the lens of optimization. We demonstrate that the velocity field in flow matching corresponds to the gradient of a sequence of smoothed distance functions, which guides latent variables toward the scaled target image set. This perspective reveals that the standard CFG formulation is an approximation of this gradient, where the prediction gap, the discrepancy between conditional and unconditional outputs, governs guidance sensitivity. Leveraging this insight, we reformulate the CFG sampling as a homotopy optimization with a manifold constraint. This formulation necessitates a manifold projection step, which we implement via an incremental gradient descent scheme during sampling. To improve computational efficiency and stability, we further enhance this iterative process with Anderson Acceleration without requiring additional model evaluations. Our proposed methods are training-free and consistently refine generation fidelity, prompt alignment, and robustness to the guidance scale. We validate their effectiveness across diverse benchmarks, demonstrating significant improvements on large-scale models such as DiT-XL-2-256, Flux, and Stable Diffusion 3.5.
Abstract:While Mixture-of-Experts (MoE) architectures have become the standard for sparsity scaling in large language models, they increasingly face diminishing returns and system-level bottlenecks. In this work, we explore embedding scaling as a potent, orthogonal dimension for scaling sparsity. Through a comprehensive analysis and experiments, we identify specific regimes where embedding scaling achieves a superior Pareto frontier compared to expert scaling. We systematically characterize the critical architectural factors governing this efficacy -- ranging from parameter budgeting to the interplay with model width and depth. Moreover, by integrating tailored system optimizations and speculative decoding, we effectively convert this sparsity into tangible inference speedups. Guided by these insights, we introduce LongCat-Flash-Lite, a 68.5B parameter model with ~3B activated trained from scratch. Despite allocating over 30B parameters to embeddings, LongCat-Flash-Lite not only surpasses parameter-equivalent MoE baselines but also exhibits exceptional competitiveness against existing models of comparable scale, particularly in agentic and coding domains.
Abstract:Handcrafted optimizers become prohibitively inefficient for complex black-box optimization (BBO) tasks. MetaBBO addresses this challenge by meta-learning to automatically configure optimizers for low-level BBO tasks, thereby eliminating heuristic dependencies. However, existing methods typically require extensive handcrafted training tasks to learn meta-strategies that generalize to target tasks, which poses a critical limitation for realistic applications with unknown task distributions. To overcome the issue, we propose the Adaptive meta Black-box Optimization Model (ABOM), which performs online parameter adaptation using solely optimization data from the target task, obviating the need for predefined task distributions. Unlike conventional metaBBO frameworks that decouple meta-training and optimization phases, ABOM introduces a closed-loop adaptive parameter learning mechanism, where parameterized evolutionary operators continuously self-update by leveraging generated populations during optimization. This paradigm shift enables zero-shot optimization: ABOM achieves competitive performance on synthetic BBO benchmarks and realistic unmanned aerial vehicle path planning problems without any handcrafted training tasks. Visualization studies reveal that parameterized evolutionary operators exhibit statistically significant search patterns, including natural selection and genetic recombination.
Abstract:Diffusion language models (DLMs) generate text through iterative denoising, but inference requires full-sequence attention at every iteration, resulting in substantial redundant computation on masked tokens. Block-wise diffusion can reduce this cost, yet it typically relies on retraining and constrained update orders, limiting its direct applicability to pretrained DLMs. Our token-level analysis reveals pronounced structural locality in DLM inference. Decoding is driven by a small set of prefix-localized active tokens; the influence of distant undecoded context diminishes rapidly, and decoded tokens exhibit stage-wise temporal stability, enabling reuse of intermediate representations except for a brief post-decode transient. Motivated by these observations, we propose \textbf{\placeholder}\footnote{The source code is available at https://github.com/vhicrgit/Window-Diffusion.}, a window-based token pruning and caching method for inference. We maintain a local computation window that slides rightward as denoising progresses, and partition undecoded tokens into: (i) \textit{active tokens} that are computed online, (ii) \textit{buffer tokens} whose KV states are cached and periodically refreshed, and (iii) \textit{far-field tokens} that are pruned outside the window. Computation is restricted to active and buffer tokens within the window, while far-field tokens are omitted at each stage. Experiments on LLaDA and Dream show that, under matched compute budgets, our method achieves up to $99\times$ inference speedup while largely preserving generation performance.
Abstract:We present LLaTTE (LLM-Style Latent Transformers for Temporal Events), a scalable transformer architecture for production ads recommendation. Through systematic experiments, we demonstrate that sequence modeling in recommendation systems follows predictable power-law scaling similar to LLMs. Crucially, we find that semantic features bend the scaling curve: they are a prerequisite for scaling, enabling the model to effectively utilize the capacity of deeper and longer architectures. To realize the benefits of continued scaling under strict latency constraints, we introduce a two-stage architecture that offloads the heavy computation of large, long-context models to an asynchronous upstream user model. We demonstrate that upstream improvements transfer predictably to downstream ranking tasks. Deployed as the largest user model at Meta, this multi-stage framework drives a 4.3\% conversion uplift on Facebook Feed and Reels with minimal serving overhead, establishing a practical blueprint for harnessing scaling laws in industrial recommender systems.
Abstract:Wireframe parsing aims to recover line segments and their junctions to form a structured geometric representation useful for downstream tasks such as Simultaneous Localization and Mapping (SLAM). Existing methods predict lines and junctions separately and reconcile them post-hoc, causing mismatches and reduced robustness. We present Co-PLNet, a point-line collaborative framework that exchanges spatial cues between the two tasks, where early detections are converted into spatial prompts via a Point-Line Prompt Encoder (PLP-Encoder), which encodes geometric attributes into compact and spatially aligned maps. A Cross-Guidance Line Decoder (CGL-Decoder) then refines predictions with sparse attention conditioned on complementary prompts, enforcing point-line consistency and efficiency. Experiments on Wireframe and YorkUrban show consistent improvements in accuracy and robustness, together with favorable real-time efficiency, demonstrating our effectiveness for structured geometry perception.
Abstract:LLMs have garnered substantial attention in recommendation systems. Yet they fall short of traditional recommenders when capturing complex preference patterns. Recent works have tried integrating traditional recommendation embeddings into LLMs to resolve this issue, yet a core gap persists between their continuous embedding and discrete semantic spaces. Intuitively, textual attributes derived from interactions can serve as critical preference rationales for LLMs' recommendation logic. However, directly inputting such attribute knowledge presents two core challenges: (1) Deficiency of sparse interactions in reflecting preference hints for unseen items; (2) Substantial noise introduction from treating all attributes as hints. To this end, we propose a preference hint discovery model based on the interaction-integrated knowledge graph, enhancing LLM-based recommendation. It utilizes traditional recommendation principles to selectively extract crucial attributes as hints. Specifically, we design a collaborative preference hint extraction schema, which utilizes semantic knowledge from similar users' explicit interactions as hints for unseen items. Furthermore, we develop an instance-wise dual-attention mechanism to quantify the preference credibility of candidate attributes, identifying hints specific to each unseen item. Using these item- and user-based hints, we adopt a flattened hint organization method to shorten input length and feed the textual hint information to the LLM for commonsense reasoning. Extensive experiments on both pair-wise and list-wise recommendation tasks verify the effectiveness of our proposed framework, indicating an average relative improvement of over 3.02% against baselines.
Abstract:Social-physical human-robot interaction (spHRI) is difficult to study: building and programming robots that integrate multiple interaction modalities is costly and slow, while VR-based prototypes often lack physical contact, breaking users' visuo-tactile expectations. We present XR$^3$, a co-located dual-VR-headset platform for HRI research in which an attendee and a hidden operator share the same physical space while experiencing different virtual embodiments. The attendee sees an expressive virtual robot that interacts face-to-face in a shared virtual environment. In real time, the robot's upper-body motion, head and gaze behavior, and facial expressions are mapped from the operator's tracked limbs and face signals. Because the operator is co-present and calibrated in the same coordinate frame, the operator can also touch the attendee, enabling perceived robot touch synchronized with the robot's visible hands. Finger and hand motion is mapped to the robot avatar using inverse kinematics to support precise contact. Beyond motion retargeting, XR$^3$ supports social retargeting of multiple nonverbal cues that can be experimentally varied while keeping physical interaction constant. We detail the system design and calibration, and demonstrate the platform in a touch-based Wizard-of-Oz study, lowering the barrier to prototyping and evaluating embodied, contact-based robot behaviors.
Abstract:Social-physical human-robot interaction (HRI) is difficult to study: building and programming robots integrating multiple interaction modalities is costly and slow, while VR-based prototypes often lack physical contact capabilities, breaking the visuo-tactile expectations of the user. We present VR2VR, a co-located dual-VR-headset platform for HRI research in which a participant and a hidden operator share the same physical space while experiencing different virtual embodiments. The participant sees an expressive virtual robot that interacts face-to-face in a shared virtual environment. In real time, the robot's upper-body movements, head and gaze behaviors, and facial expressions are mapped from the operator's tracked limbs and face signals. Since the operator is physically co-present and calibrated into the same coordinate frame, the operator can also touch the participant, enabling the participant to perceive robot touch synchronized with the visual perception of the robot's hands on their hands: the operator's finger and hand motion is mapped to the robot avatar using inverse kinematics to support precise contact. Beyond faithful motion retargeting for limb control, our VR2VR system supports social retargeting of multiple nonverbal cues, which can be experimentally varied and investigated while keeping the physical interaction constant. We detail the system design, calibration workflow, and safety considerations, and demonstrate how the platform can be used for experimentation and data collection in a touch-based Wizard-of-Oz HRI study, thus illustrating how VR2VR lowers barriers for rapidly prototyping and rigorously evaluating embodied, contact-based robot behaviors.