Abstract:Recent advances of reasoning models, exemplified by OpenAI's o1 and DeepSeek's R1, highlight the significant potential of Reinforcement Learning (RL) to enhance the reasoning capabilities of Large Language Models (LLMs). However, replicating these advancements across diverse domains remains challenging due to limited methodological transparency. In this work, we present two-Staged history-Resampling Policy Optimization (SRPO), which surpasses the performance of DeepSeek-R1-Zero-32B on the AIME24 and LiveCodeBench benchmarks. SRPO achieves this using the same base model as DeepSeek (i.e. Qwen2.5-32B), using only about 1/10 of the training steps required by DeepSeek-R1-Zero-32B, demonstrating superior efficiency. Building upon Group Relative Policy Optimization (GRPO), we introduce two key methodological innovations: (1) a two-stage cross-domain training paradigm designed to balance the development of mathematical reasoning and coding proficiency, and (2) History Resampling (HR), a technique to address ineffective samples. Our comprehensive experiments validate the effectiveness of our approach, offering valuable insights into scaling LLM reasoning capabilities across diverse tasks.
Abstract:Construction tasks are inherently unpredictable, with dynamic environments and safety-critical demands posing significant risks to workers. Exoskeletons offer potential assistance but falter without accurate intent recognition across diverse locomotion modes. This paper presents a locomotion prediction agent leveraging Large Language Models (LLMs) augmented with memory systems, aimed at improving exoskeleton assistance in such settings. Using multimodal inputs - spoken commands and visual data from smart glasses - the agent integrates a Perception Module, Short-Term Memory (STM), Long-Term Memory (LTM), and Refinement Module to predict locomotion modes effectively. Evaluation reveals a baseline weighted F1-score of 0.73 without memory, rising to 0.81 with STM, and reaching 0.90 with both STM and LTM, excelling with vague and safety-critical commands. Calibration metrics, including a Brier Score drop from 0.244 to 0.090 and ECE from 0.222 to 0.044, affirm improved reliability. This framework supports safer, high-level human-exoskeleton collaboration, with promise for adaptive assistive systems in dynamic industries.
Abstract:Large Language Models (LLMs) exhibit pronounced memory-bound characteristics during inference due to High Bandwidth Memory (HBM) bandwidth constraints. In this paper, we propose an L2 Cache-oriented asynchronous KV Cache prefetching method to break through the memory bandwidth bottleneck in LLM inference through computation-load overlap. By strategically scheduling idle memory bandwidth during active computation windows, our method proactively prefetches required KV Cache into GPU L2 cache, enabling high-speed L2 cache hits for subsequent accesses and effectively hiding HBM access latency within computational cycles. Extensive experiments on NVIDIA H20 GPUs demonstrate that the proposed method achieves 2.15x improvement in attention kernel efficiency and up to 1.97x end-to-end throughput enhancement, surpassing state-of-the-art baseline FlashAttention-3. Notably, our solution maintains orthogonality to existing optimization techniques and can be integrated with current inference frameworks, providing a scalable latency-hiding solution for next-generation LLM inference engines.
Abstract:Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
Abstract:Advancements in computer-assisted surgical procedures heavily rely on accurate visual data interpretation from camera systems used during surgeries. Traditional open-access datasets focusing on surgical procedures are often limited by their small size, typically consisting of fewer than 100 videos with less than 100K images. To address these constraints, a new dataset called Surg-3M has been compiled using a novel aggregation pipeline that collects high-resolution videos from online sources. Featuring an extensive collection of over 4K surgical videos and more than 3 million high-quality images from multiple procedure types, Surg-3M offers a comprehensive resource surpassing existing alternatives in size and scope, including two novel tasks. To demonstrate the effectiveness of this dataset, we present SurgFM, a self-supervised foundation model pretrained on Surg-3M that achieves impressive results in downstream tasks such as surgical phase recognition, action recognition, and tool presence detection. Combining key components from ConvNeXt, DINO, and an innovative augmented distillation method, SurgFM exhibits exceptional performance compared to specialist architectures across various benchmarks. Our experimental results show that SurgFM outperforms state-of-the-art models in multiple downstream tasks, including significant gains in surgical phase recognition (+8.9pp, +4.7pp, and +3.9pp of Jaccard in AutoLaparo, M2CAI16, and Cholec80), action recognition (+3.1pp of mAP in CholecT50) and tool presence detection (+4.6pp of mAP in Cholec80). Moreover, even when using only half of the data, SurgFM outperforms state-of-the-art models in AutoLaparo and achieves state-of-the-art performance in Cholec80. Both Surg-3M and SurgFM have significant potential to accelerate progress towards developing autonomous robotic surgery systems.
Abstract:Rectified Flow (RF) models trained with a Flow matching framework have achieved state-of-the-art performance on Text-to-Image (T2I) conditional generation. Yet, multiple benchmarks show that synthetic images can still suffer from poor alignment with the prompt, i.e., images show wrong attribute binding, subject positioning, numeracy, etc. While the literature offers many methods to improve T2I alignment, they all consider only Diffusion Models, and require auxiliary datasets, scoring models, and linguistic analysis of the prompt. In this paper we aim to address these gaps. First, we introduce RFMI, a novel Mutual Information (MI) estimator for RF models that uses the pre-trained model itself for the MI estimation. Then, we investigate a self-supervised fine-tuning approach for T2I alignment based on RFMI that does not require auxiliary information other than the pre-trained model itself. Specifically, a fine-tuning set is constructed by selecting synthetic images generated from the pre-trained RF model and having high point-wise MI between images and prompts. Our experiments on MI estimation benchmarks demonstrate the validity of RFMI, and empirical fine-tuning on SD3.5-Medium confirms the effectiveness of RFMI for improving T2I alignment while maintaining image quality.
Abstract:The Base-New Trade-off (BNT) problem universally exists during the optimization of CLIP-based prompt tuning, where continuous fine-tuning on base (target) classes leads to a simultaneous decrease of generalization ability on new (unseen) classes. Existing approaches attempt to regulate the prompt tuning process to balance BNT by appending constraints. However, imposed on the same target prompt, these constraints fail to fully avert the mutual exclusivity between the optimization directions for base and new. As a novel solution to this challenge, we propose the plug-and-play Dual-Prompt Collaboration (DPC) framework, the first that decoupling the optimization processes of base and new tasks at the prompt level. Specifically, we clone a learnable parallel prompt based on the backbone prompt, and introduce a variable Weighting-Decoupling framework to independently control the optimization directions of dual prompts specific to base or new tasks, thus avoiding the conflict in generalization. Meanwhile, we propose a Dynamic Hard Negative Optimizer, utilizing dual prompts to construct a more challenging optimization task on base classes for enhancement. For interpretability, we prove the feature channel invariance of the prompt vector during the optimization process, providing theoretical support for the Weighting-Decoupling of DPC. Extensive experiments on multiple backbones demonstrate that DPC can significantly improve base performance without introducing any external knowledge beyond the base classes, while maintaining generalization to new classes. Code is available at: https://github.com/JREion/DPC.
Abstract:LLMs have demonstrated impressive capabilities in code generation and comprehension, but their potential in being able to perform program analysis in a formal, automatic manner remains under-explored. To that end, we systematically investigate whether LLMs can reason about programs using a program analysis framework called abstract interpretation. We prompt LLMs to follow two different strategies, denoted as Compositional and Fixed Point Equation, to formally reason in the style of abstract interpretation, which has never been done before to the best of our knowledge. We validate our approach using state-of-the-art LLMs on 22 challenging benchmark programs from the Software Verification Competition (SV-COMP) 2019 dataset, widely used in program analysis. Our results show that our strategies are able to elicit abstract interpretation-based reasoning in the tested models, but LLMs are susceptible to logical errors, especially while interpreting complex program structures, as well as general hallucinations. This highlights key areas for improvement in the formal reasoning capabilities of LLMs.
Abstract:Finance decision-making often relies on in-depth data analysis across various data sources, including financial tables, news articles, stock prices, etc. In this work, we introduce FinTMMBench, the first comprehensive benchmark for evaluating temporal-aware multi-modal Retrieval-Augmented Generation (RAG) systems in finance. Built from heterologous data of NASDAQ 100 companies, FinTMMBench offers three significant advantages. 1) Multi-modal Corpus: It encompasses a hybrid of financial tables, news articles, daily stock prices, and visual technical charts as the corpus. 2) Temporal-aware Questions: Each question requires the retrieval and interpretation of its relevant data over a specific time period, including daily, weekly, monthly, quarterly, and annual periods. 3) Diverse Financial Analysis Tasks: The questions involve 10 different tasks, including information extraction, trend analysis, sentiment analysis and event detection, etc. We further propose a novel TMMHybridRAG method, which first leverages LLMs to convert data from other modalities (e.g., tabular, visual and time-series data) into textual format and then incorporates temporal information in each node when constructing graphs and dense indexes. Its effectiveness has been validated in extensive experiments, but notable gaps remain, highlighting the challenges presented by our FinTMMBench.
Abstract:Vision-language models (VLMs) have achieved remarkable advancements, capitalizing on the impressive capabilities of large language models (LLMs) across diverse tasks. Despite this, a critical challenge known as hallucination occurs when models overconfidently describe objects or attributes absent from the image, a problem exacerbated by the tendency of VLMs to rely on linguistic priors. This limitation reduces model reliability in high-stakes applications. In this work, we have observed the characteristic of logits' continuity consistency enhancement and introduced a straightforward and efficient method, Cross-Temporal Prediction Connection (TPC), designed to enhance the semantic consistency of logits by connecting them temporally across timesteps. TPC amplifies information flow and improves coherence, effectively reducing hallucination. Extensive experiments show that TPC surpasses existing representatives, delivering superior performance in both accuracy and efficiency while maintaining robustness in open-ended text generation tasks.