Abstract:By integrating language understanding with perceptual modalities such as images, multimodal large language models (MLLMs) constitute a critical substrate for modern AI systems, particularly intelligent agents operating in open and interactive environments. However, their increasing accessibility also raises heightened risks of misuse, such as generating harmful or unsafe content. To mitigate these risks, alignment techniques are commonly applied to align model behavior with human values. Despite these efforts, recent studies have shown that jailbreak attacks can circumvent alignment and elicit unsafe outputs. Currently, most existing jailbreak methods are tailored for open-source models and exhibit limited effectiveness against commercial MLLM-integrated systems, which often employ additional filters. These filters can detect and prevent malicious input and output content, significantly reducing jailbreak threats. In this paper, we reveal that the success of these safety filters heavily relies on a critical assumption that malicious content must be explicitly visible in either the input or the output. This assumption, while often valid for traditional LLM-integrated systems, breaks down in MLLM-integrated systems, where attackers can leverage multiple modalities to conceal adversarial intent, leading to a false sense of security in existing MLLM-integrated systems. To challenge this assumption, we propose Odysseus, a novel jailbreak paradigm that introduces dual steganography to covertly embed malicious queries and responses into benign-looking images. Extensive experiments on benchmark datasets demonstrate that our Odysseus successfully jailbreaks several pioneering and realistic MLLM-integrated systems, achieving up to 99% attack success rate. It exposes a fundamental blind spot in existing defenses, and calls for rethinking cross-modal security in MLLM-integrated systems.
Abstract:The rapid development of large language model (LLM)-based agents has unlocked new possibilities for autonomous multi-turn reasoning and tool-augmented decision-making. However, their real-world deployment is hindered by severe inefficiencies that arise not from isolated model inference, but from the systemic latency accumulated across reasoning loops, context growth, and heterogeneous tool interactions. This paper presents AgentInfer, a unified framework for end-to-end agent acceleration that bridges inference optimization and architectural design. We decompose the problem into four synergistic components: AgentCollab, a hierarchical dual-model reasoning framework that balances large- and small-model usage through dynamic role assignment; AgentSched, a cache-aware hybrid scheduler that minimizes latency under heterogeneous request patterns; AgentSAM, a suffix-automaton-based speculative decoding method that reuses multi-session semantic memory to achieve low-overhead inference acceleration; and AgentCompress, a semantic compression mechanism that asynchronously distills and reorganizes agent memory without disrupting ongoing reasoning. Together, these modules form a Self-Evolution Engine capable of sustaining efficiency and cognitive stability throughout long-horizon reasoning tasks. Experiments on the BrowseComp-zh and DeepDiver benchmarks demonstrate that through the synergistic collaboration of these methods, AgentInfer reduces ineffective token consumption by over 50%, achieving an overall 1.8-2.5 times speedup with preserved accuracy. These results underscore that optimizing for agentic task completion-rather than merely per-token throughput-is the key to building scalable, efficient, and self-improving intelligent systems.
Abstract:Trajectory planning is a fundamental yet challenging component of autonomous driving. End-to-end planners frequently falter under adverse weather, unpredictable human behavior, or complex road layouts, primarily because they lack strong generalization or few-shot capabilities beyond their training data. We propose LLaViDA, a Large Language Vision Driving Assistant that leverages a Vision-Language Model (VLM) for object motion prediction, semantic grounding, and chain-of-thought reasoning for trajectory planning in autonomous driving. A two-stage training pipeline--supervised fine-tuning followed by Trajectory Preference Optimization (TPO)--enhances scene understanding and trajectory planning by injecting regression-based supervision, produces a powerful "VLM Trajectory Planner for Autonomous Driving." On the NuScenes benchmark, LLaViDA surpasses state-of-the-art end-to-end and other recent VLM/LLM-based baselines in open-loop trajectory planning task, achieving an average L2 trajectory error of 0.31 m and a collision rate of 0.10% on the NuScenes test set. The code for this paper is available at GitHub.
Abstract:Backdoor attacks pose a significant threat to the security and reliability of deep learning models. To mitigate such attacks, one promising approach is to learn to extract features from the target model and use these features for backdoor detection. However, we discover that existing learning-based neural backdoor detection methods do not generalize well to new architectures not seen during the learning phase. In this paper, we analyze the root cause of this issue and propose a novel black-box neural backdoor detection method called ArcGen. Our method aims to obtain architecture-invariant model features, i.e., aligned features, for effective backdoor detection. Specifically, in contrast to existing methods directly using model outputs as model features, we introduce an additional alignment layer in the feature extraction function to further process these features. This reduces the direct influence of architecture information on the features. Then, we design two alignment losses to train the feature extraction function. These losses explicitly require that features from models with similar backdoor behaviors but different architectures are aligned at both the distribution and sample levels. With these techniques, our method demonstrates up to 42.5% improvements in detection performance (e.g., AUC) on unseen model architectures. This is based on a large-scale evaluation involving 16,896 models trained on diverse datasets, subjected to various backdoor attacks, and utilizing different model architectures. Our code is available at https://github.com/SeRAlab/ArcGen.
Abstract:We present Flex, an efficient and effective scene encoder that addresses the computational bottleneck of processing high-volume multi-camera data in end-to-end autonomous driving. Flex employs a small set of learnable scene tokens to jointly encode information from all image tokens across different cameras and timesteps. By design, our approach is geometry-agnostic, learning a compact scene representation directly from data without relying on the explicit 3D inductive biases, such as Bird-Eye-View (BEV), occupancy or tri-plane representations, which are common in prior work. This holistic encoding strategy aggressively compresses the visual input for the downstream Large Language Model (LLM) based policy model. Evaluated on a large-scale proprietary dataset of 20,000 driving hours, our Flex achieves 2.2x greater inference throughput while improving driving performance by a large margin compared to state-of-the-art methods. Furthermore, we show that these compact scene tokens develop an emergent capability for scene decomposition without any explicit supervision. Our findings challenge the prevailing assumption that 3D priors are necessary, demonstrating that a data-driven, joint encoding strategy offers a more scalable, efficient and effective path for future autonomous driving systems.
Abstract:3D Gaussian Splatting (3DGS) is an increasingly popular novel view synthesis approach due to its fast rendering time, and high-quality output. However, scaling 3DGS to large (or intricate) scenes is challenging due to its large memory requirement, which exceed most GPU's memory capacity. In this paper, we describe CLM, a system that allows 3DGS to render large scenes using a single consumer-grade GPU, e.g., RTX4090. It does so by offloading Gaussians to CPU memory, and loading them into GPU memory only when necessary. To reduce performance and communication overheads, CLM uses a novel offloading strategy that exploits observations about 3DGS's memory access pattern for pipelining, and thus overlap GPU-to-CPU communication, GPU computation and CPU computation. Furthermore, we also exploit observation about the access pattern to reduce communication volume. Our evaluation shows that the resulting implementation can render a large scene that requires 100 million Gaussians on a single RTX4090 and achieve state-of-the-art reconstruction quality.
Abstract:Large-scale vision-language models, especially CLIP, have demonstrated remarkable performance across diverse downstream tasks. Soft prompts, as carefully crafted modules that efficiently adapt vision-language models to specific tasks, necessitate effective copyright protection. In this paper, we investigate model copyright protection by auditing whether suspicious third-party models incorporate protected soft prompts. While this can be viewed as a special case of model ownership auditing, our analysis shows that existing techniques are ineffective due to prompt learning's unique characteristics. Non-intrusive auditing is inherently prone to false positives when independent models share similar data distributions with victim models. Intrusive approaches also fail: backdoor methods designed for CLIP cannot embed functional triggers, while extending traditional DNN backdoor techniques to prompt learning suffers from harmfulness and ambiguity challenges. We find that these failures in intrusive auditing stem from the same fundamental reason: watermarking operates within the same decision space as the primary task yet pursues opposing objectives. Motivated by these findings, we propose sequential watermarking for soft prompts (SWAP), which implants watermarks into a different and more complex space. SWAP encodes watermarks through a specific order of defender-specified out-of-distribution classes, inspired by the zero-shot prediction capability of CLIP. This watermark, which is embedded in a more complex space, keeps the original prediction label unchanged, making it less opposed to the primary task. We further design a hypothesis-test-guided verification protocol for SWAP and provide theoretical analyses of success conditions. Extensive experiments on 11 datasets demonstrate SWAP's effectiveness, harmlessness, and robustness against potential adaptive attacks.
Abstract:Jailbreaking attacks on the vision modality typically rely on imperceptible adversarial perturbations, whereas attacks on the textual modality are generally assumed to require visible modifications (e.g., non-semantic suffixes). In this paper, we introduce imperceptible jailbreaks that exploit a class of Unicode characters called variation selectors. By appending invisible variation selectors to malicious questions, the jailbreak prompts appear visually identical to original malicious questions on screen, while their tokenization is "secretly" altered. We propose a chain-of-search pipeline to generate such adversarial suffixes to induce harmful responses. Our experiments show that our imperceptible jailbreaks achieve high attack success rates against four aligned LLMs and generalize to prompt injection attacks, all without producing any visible modifications in the written prompt. Our code is available at https://github.com/sail-sg/imperceptible-jailbreaks.




Abstract:We aim to recover the geometry of 3D parametric scenes using very few depth measurements from low-cost, commercially available time-of-flight sensors. These sensors offer very low spatial resolution (i.e., a single pixel), but image a wide field-of-view per pixel and capture detailed time-of-flight data in the form of time-resolved photon counts. This time-of-flight data encodes rich scene information and thus enables recovery of simple scenes from sparse measurements. We investigate the feasibility of using a distributed set of few measurements (e.g., as few as 15 pixels) to recover the geometry of simple parametric scenes with a strong prior, such as estimating the 6D pose of a known object. To achieve this, we design a method that utilizes both feed-forward prediction to infer scene parameters, and differentiable rendering within an analysis-by-synthesis framework to refine the scene parameter estimate. We develop hardware prototypes and demonstrate that our method effectively recovers object pose given an untextured 3D model in both simulations and controlled real-world captures, and show promising initial results for other parametric scenes. We additionally conduct experiments to explore the limits and capabilities of our imaging solution.
Abstract:Cross-view object geo-localization (CVOGL) aims to determine the location of a specific object in high-resolution satellite imagery given a query image with a point prompt. Existing approaches treat CVOGL as a one-shot detection task, directly regressing object locations from cross-view information aggregation, but they are vulnerable to feature noise and lack mechanisms for error correction. In this paper, we propose ReCOT, a Recurrent Cross-view Object geo-localization Transformer, which reformulates CVOGL as a recurrent localization task. ReCOT introduces a set of learnable tokens that encode task-specific intent from the query image and prompt embeddings, and iteratively attend to the reference features to refine the predicted location. To enhance this recurrent process, we incorporate two complementary modules: (1) a SAM-based knowledge distillation strategy that transfers segmentation priors from the Segment Anything Model (SAM) to provide clearer semantic guidance without additional inference cost, and (2) a Reference Feature Enhancement Module (RFEM) that introduces a hierarchical attention to emphasize object-relevant regions in the reference features. Extensive experiments on standard CVOGL benchmarks demonstrate that ReCOT achieves state-of-the-art (SOTA) performance while reducing parameters by 60% compared to previous SOTA approaches.