Abstract:Prompt-driven Video Segmentation Foundation Models (VSFMs) such as SAM2 are increasingly deployed in applications like autonomous driving and digital pathology, raising concerns about backdoor threats. Surprisingly, we find that directly transferring classic backdoor attacks (e.g., BadNet) to VSFMs is almost ineffective, with ASR below 5\%. To understand this, we study encoder gradients and attention maps and observe that conventional training keeps gradients for clean and triggered samples largely aligned, while attention still focuses on the true object, preventing the encoder from learning a distinct trigger-related representation. To address this challenge, we propose BadVSFM, the first backdoor framework tailored to prompt-driven VSFMs. BadVSFM uses a two-stage strategy: (1) steer the image encoder so triggered frames map to a designated target embedding while clean frames remain aligned with a clean reference encoder; (2) train the mask decoder so that, across prompt types, triggered frame-prompt pairs produce a shared target mask, while clean outputs stay close to a reference decoder. Extensive experiments on two datasets and five VSFMs show that BadVSFM achieves strong, controllable backdoor effects under diverse triggers and prompts while preserving clean segmentation quality. Ablations over losses, stages, targets, trigger settings, and poisoning rates demonstrate robustness to reasonable hyperparameter changes and confirm the necessity of the two-stage design. Finally, gradient-conflict analysis and attention visualizations show that BadVSFM separates triggered and clean representations and shifts attention to trigger regions, while four representative defenses remain largely ineffective, revealing an underexplored vulnerability in current VSFMs.
Abstract:Recent advances in video generation have been remarkable, enabling models to produce visually compelling videos with synchronized audio. While existing video generation benchmarks provide comprehensive metrics for visual quality, they lack convincing evaluations for audio-video generation, especially for models aiming to generate synchronized audio-video outputs. To address this gap, we introduce VABench, a comprehensive and multi-dimensional benchmark framework designed to systematically evaluate the capabilities of synchronous audio-video generation. VABench encompasses three primary task types: text-to-audio-video (T2AV), image-to-audio-video (I2AV), and stereo audio-video generation. It further establishes two major evaluation modules covering 15 dimensions. These dimensions specifically assess pairwise similarities (text-video, text-audio, video-audio), audio-video synchronization, lip-speech consistency, and carefully curated audio and video question-answering (QA) pairs, among others. Furthermore, VABench covers seven major content categories: animals, human sounds, music, environmental sounds, synchronous physical sounds, complex scenes, and virtual worlds. We provide a systematic analysis and visualization of the evaluation results, aiming to establish a new standard for assessing video generation models with synchronous audio capabilities and to promote the comprehensive advancement of the field.




Abstract:Large language models (LLMs) have demonstrated potential in educational applications, yet their capacity to accurately assess the cognitive alignment of reading materials with students' developmental stages remains insufficiently explored. This gap is particularly critical given the foundational educational principle of the Zone of Proximal Development (ZPD), which emphasizes the need to match learning resources with Students' Cognitive Abilities (SCA). Despite the importance of this alignment, there is a notable absence of comprehensive studies investigating LLMs' ability to evaluate reading comprehension difficulty across different student age groups, especially in the context of Chinese language education. To fill this gap, we introduce ZPD-SCA, a novel benchmark specifically designed to assess stage-level Chinese reading comprehension difficulty. The benchmark is annotated by 60 Special Grade teachers, a group that represents the top 0.15% of all in-service teachers nationwide. Experimental results reveal that LLMs perform poorly in zero-shot learning scenarios, with Qwen-max and GLM even falling below the probability of random guessing. When provided with in-context examples, LLMs performance improves substantially, with some models achieving nearly double the accuracy of their zero-shot baselines. These results reveal that LLMs possess emerging abilities to assess reading difficulty, while also exposing limitations in their current training for educationally aligned judgment. Notably, even the best-performing models display systematic directional biases, suggesting difficulties in accurately aligning material difficulty with SCA. Furthermore, significant variations in model performance across different genres underscore the complexity of task. We envision that ZPD-SCA can provide a foundation for evaluating and improving LLMs in cognitively aligned educational applications.



Abstract:Multi-round incomplete information tasks are crucial for evaluating the lateral thinking capabilities of large language models (LLMs). Currently, research primarily relies on multiple benchmarks and automated evaluation metrics to assess these abilities. However, our study reveals novel insights into the limitations of existing methods, as they often yield misleading results that fail to uncover key issues, such as shortcut-taking behaviors, rigid patterns, and premature task termination. These issues obscure the true reasoning capabilities of LLMs and undermine the reliability of evaluations. To address these limitations, we propose a refined set of evaluation standards, including inspection of reasoning paths, diversified assessment metrics, and comparative analyses with human performance.




Abstract:Our research reveals a new privacy risk associated with the vision-language model (VLM) agentic framework: the ability to infer sensitive attributes (e.g., age and health information) and even abstract ones (e.g., personality and social traits) from a set of personal images, which we term "image private attribute profiling." This threat is particularly severe given that modern apps can easily access users' photo albums, and inference from image sets enables models to exploit inter-image relations for more sophisticated profiling. However, two main challenges hinder our understanding of how well VLMs can profile an individual from a few personal photos: (1) the lack of benchmark datasets with multi-image annotations for private attributes, and (2) the limited ability of current multimodal large language models (MLLMs) to infer abstract attributes from large image collections. In this work, we construct PAPI, the largest dataset for studying private attribute profiling in personal images, comprising 2,510 images from 251 individuals with 3,012 annotated privacy attributes. We also propose HolmesEye, a hybrid agentic framework that combines VLMs and LLMs to enhance privacy inference. HolmesEye uses VLMs to extract both intra-image and inter-image information and LLMs to guide the inference process as well as consolidate the results through forensic analysis, overcoming existing limitations in long-context visual reasoning. Experiments reveal that HolmesEye achieves a 10.8% improvement in average accuracy over state-of-the-art baselines and surpasses human-level performance by 15.0% in predicting abstract attributes. This work highlights the urgency of addressing privacy risks in image-based profiling and offers both a new dataset and an advanced framework to guide future research in this area.




Abstract:Audio Language Models (ALMs) have made significant progress recently. These models integrate the audio modality directly into the model, rather than converting speech into text and inputting text to Large Language Models (LLMs). While jailbreak attacks on LLMs have been extensively studied, the security of ALMs with audio modalities remains largely unexplored. Currently, there is a lack of an adversarial audio dataset and a unified framework specifically designed to evaluate and compare attacks and ALMs. In this paper, we present JALMBench, the \textit{first} comprehensive benchmark to assess the safety of ALMs against jailbreak attacks. JALMBench includes a dataset containing 2,200 text samples and 51,381 audio samples with over 268 hours. It supports 12 mainstream ALMs, 4 text-transferred and 4 audio-originated attack methods, and 5 defense methods. Using JALMBench, we provide an in-depth analysis of attack efficiency, topic sensitivity, voice diversity, and attack representations. Additionally, we explore mitigation strategies for the attacks at both the prompt level and the response level.




Abstract:Plant disease is a critical factor affecting agricultural production. Traditional manual recognition methods face significant drawbacks, including low accuracy, high costs, and inefficiency. Deep learning techniques have demonstrated significant benefits in identifying plant diseases, but they still face challenges such as inference delays and high energy consumption. Deep learning algorithms are difficult to run on resource-limited embedded devices. Offloading these models to cloud servers is confronted with the restriction of communication bandwidth, and all of these factors will influence the inference's efficiency. We propose a collaborative inference framework for recognizing plant diseases between edge devices and cloud servers to enhance inference speed. The DNN model for plant disease recognition is pruned through deep reinforcement learning to improve the inference speed and reduce energy consumption. Then the optimal split point is determined by a greedy strategy to achieve the best collaborated inference acceleration. Finally, the system for collaborative inference acceleration in plant disease recognition has been implemented using Gradio to facilitate friendly human-machine interaction. Experiments indicate that the proposed collaborative inference framework significantly increases inference speed while maintaining acceptable recognition accuracy, offering a novel solution for rapidly diagnosing and preventing plant diseases.




Abstract:As large language models (LLMs) are increasingly used in human-centered tasks, assessing their psychological traits is crucial for understanding their social impact and ensuring trustworthy AI alignment. While existing reviews have covered some aspects of related research, several important areas have not been systematically discussed, including detailed discussions of diverse psychological tests, LLM-specific psychological datasets, and the applications of LLMs with psychological traits. To address this gap, we systematically review six key dimensions of applying psychological theories to LLMs: (1) assessment tools; (2) LLM-specific datasets; (3) evaluation metrics (consistency and stability); (4) empirical findings; (5) personality simulation methods; and (6) LLM-based behavior simulation. Our analysis highlights both the strengths and limitations of current methods. While some LLMs exhibit reproducible personality patterns under specific prompting schemes, significant variability remains across tasks and settings. Recognizing methodological challenges such as mismatches between psychological tools and LLMs' capabilities, as well as inconsistencies in evaluation practices, this study aims to propose future directions for developing more interpretable, robust, and generalizable psychological assessment frameworks for LLMs.
Abstract:With the timely formation of personalized intervention plans based on high-dimensional heterogeneous time series information becoming an important challenge in the medical field today, electronic medical records, wearables, and other multi-source medical data are increasingly generated and diversified. In this work, we develop a system to generate personalized medical intervention strategies based on Group Relative Policy Optimization (GRPO) and Time-Series Data Fusion. First, by incorporating relative policy constraints among the groups during policy gradient updates, we adaptively balance individual and group gains. To improve the robustness and interpretability of decision-making, a multi-layer neural network structure is employed to group-code patient characteristics. Second, for the rapid multi-modal fusion of multi-source heterogeneous time series, a multi-channel neural network combined with a self-attention mechanism is used for dynamic feature extraction. Key feature screening and aggregation are achieved through a differentiable gating network. Finally, a collaborative search process combining a genetic algorithm and Monte Carlo tree search is proposed to find the ideal intervention strategy, achieving global optimization. Experimental results show significant improvements in accuracy, coverage, and decision-making benefits compared with existing methods.




Abstract:Federated learning (FL) enables collaborative model training while preserving data privacy, but its decentralized nature exposes it to client-side data poisoning attacks (DPAs) and model poisoning attacks (MPAs) that degrade global model performance. While numerous proposed defenses claim substantial effectiveness, their evaluation is typically done in isolation with limited attack strategies, raising concerns about their validity. Additionally, existing studies overlook the mutual effectiveness of defenses against both DPAs and MPAs, causing fragmentation in this field. This paper aims to provide a unified benchmark and analysis of defenses against DPAs and MPAs, clarifying the distinction between these two similar but slightly distinct domains. We present a systematic taxonomy of poisoning attacks and defense strategies, outlining their design, strengths, and limitations. Then, a unified comparative evaluation across FL algorithms and data heterogeneity is conducted to validate their individual and mutual effectiveness and derive key insights for design principles and future research. Along with the analysis, we frame our work to a unified benchmark, FLPoison, with high modularity and scalability to evaluate 15 representative poisoning attacks and 17 defense strategies, facilitating future research in this domain. Code is available at https://github.com/vio1etus/FLPoison.