Victor
Abstract:The rapid growth of long-duration, high-definition videos has made efficient video quality assessment (VQA) a critical challenge. Existing research typically tackles this problem through two main strategies: reducing model parameters and resampling inputs. However, light-weight Convolution Neural Networks (CNN) and Transformers often struggle to balance efficiency with high performance due to the requirement of long-range modeling capabilities. Recently, the state-space model, particularly Mamba, has emerged as a promising alternative, offering linear complexity with respect to sequence length. Meanwhile, efficient VQA heavily depends on resampling long sequences to minimize computational costs, yet current resampling methods are often weak in preserving essential semantic information. In this work, we present MVQA, a Mamba-based model designed for efficient VQA along with a novel Unified Semantic and Distortion Sampling (USDS) approach. USDS combines semantic patch sampling from low-resolution videos and distortion patch sampling from original-resolution videos. The former captures semantically dense regions, while the latter retains critical distortion details. To prevent computation increase from dual inputs, we propose a fusion mechanism using pre-defined masks, enabling a unified sampling strategy that captures both semantic and quality information without additional computational burden. Experiments show that the proposed MVQA, equipped with USDS, achieve comparable performance to state-of-the-art methods while being $2\times$ as fast and requiring only $1/5$ GPU memory.
Abstract:Time series anomaly detection holds notable importance for risk identification and fault detection across diverse application domains. Unsupervised learning methods have become popular because they have no requirement for labels. However, due to the challenges posed by the multiplicity of abnormal patterns, the sparsity of anomalies, and the growth of data scale and complexity, these methods often fail to capture robust and representative dependencies within the time series for identifying anomalies. To enhance the ability of models to capture normal patterns of time series and avoid the retrogression of modeling ability triggered by the dependencies on high-quality prior knowledge, we propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD). Specifically, DConAD generates differential data to provide additional information about time series and utilizes transformer-based architecture to capture spatiotemporal dependencies, which enhances the robustness of unbiased representation learning ability. Furthermore, DConAD implements a novel KL divergence-based contrastive learning paradigm that only uses positive samples to avoid deviation from reconstruction and deploys the stop-gradient strategy to compel convergence. Extensive experiments on five public datasets show the superiority and effectiveness of DConAD compared with nine baselines. The code is available at https://github.com/shaieesss/DConAD.
Abstract:This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
Abstract:With the widespread adoption of Large Language Models (LLMs), jailbreak attacks have become an increasingly pressing safety concern. While safety-aligned LLMs can effectively defend against normal harmful queries, they remain vulnerable to such attacks. Existing defense methods primarily rely on fine-tuning or input modification, which often suffer from limited generalization and reduced utility. To address this, we introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs via targeted attention modification. Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks. During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens. Our experimental results demonstrate that DETAM outperforms various baselines in jailbreak defense and exhibits robust generalization across different attacks and models, maintaining its effectiveness even on in-the-wild jailbreak data. Furthermore, in evaluating the model's utility, we incorporated over-defense datasets, which further validate the superior performance of our approach. The code will be released immediately upon acceptance.
Abstract:Graph-level clustering remains a pivotal yet formidable challenge in graph learning. Recently, the integration of deep learning with representation learning has demonstrated notable advancements, yielding performance enhancements to a certain degree. However, existing methods suffer from at least one of the following issues: 1. the original graph structure has noise, and 2. during feature propagation and pooling processes, noise is gradually aggregated into the graph-level embeddings through information propagation. Consequently, these two limitations mask clustering-friendly information, leading to suboptimal graph-level clustering performance. To this end, we propose a novel Dual Boost-Driven Graph-Level Clustering Network (DBGCN) to alternately promote graph-level clustering and filtering out interference information in a unified framework. Specifically, in the pooling step, we evaluate the contribution of features at the global and optimize them using a learnable transformation matrix to obtain high-quality graph-level representation, such that the model's reasoning capability can be improved. Moreover, to enable reliable graph-level clustering, we first identify and suppress information detrimental to clustering by evaluating similarities between graph-level representations, providing more accurate guidance for multi-view fusion. Extensive experiments demonstrated that DBGCN outperforms the state-of-the-art graph-level clustering methods on six benchmark datasets.
Abstract:Graph-level clustering is a fundamental task of data mining, aiming at dividing unlabeled graphs into distinct groups. However, existing deep methods that are limited by pooling have difficulty extracting diverse and complex graph structure features, while traditional graph kernel methods rely on exhaustive substructure search, unable to adaptive handle multi-relational data. This limitation hampers producing robust and representative graph-level embeddings. To address this issue, we propose a novel Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering (MGSN), which integrates multi-relation modeling with graph kernel techniques to fully leverage their respective advantages. Specifically, MGSN constructs multi-relation graphs to capture diverse semantic relationships between nodes and graphs, which employ graph kernel methods to extract graph similarity features, enriching the representation space. Moreover, a relation-aware representation refinement strategy is designed, which adaptively aligns multi-relation information across views while enhancing graph-level features through a progressive fusion process. Extensive experiments on multiple benchmark datasets demonstrate the superiority of MGSN over state-of-the-art methods. The results highlight its ability to leverage multi-relation structures and graph kernel features, establishing a new paradigm for robust graph-level clustering.
Abstract:Objects with large base areas become ungraspable when they exceed the end-effector's maximum aperture. Existing approaches address this limitation through extrinsic dexterity, which exploits environmental features for non-prehensile manipulation. While grippers have shown some success in this domain, dexterous hands offer superior flexibility and manipulation capabilities that enable richer environmental interactions, though they present greater control challenges. Here we present ExDex, a dexterous arm-hand system that leverages reinforcement learning to enable non-prehensile manipulation for grasping ungraspable objects. Our system learns two strategic manipulation sequences: relocating objects from table centers to edges for direct grasping, or to walls where extrinsic dexterity enables grasping through environmental interaction. We validate our approach through extensive experiments with dozens of diverse household objects, demonstrating both superior performance and generalization capabilities with novel objects. Furthermore, we successfully transfer the learned policies from simulation to a real-world robot system without additional training, further demonstrating its applicability in real-world scenarios. Project website: https://tangty11.github.io/ExDex/.
Abstract:Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, \textbf{MathFusionQA}, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.
Abstract:Large Language Models (LLMs) have demonstrated promising capabilities in solving mathematical reasoning tasks, leveraging Chain-of-Thought (CoT) data as a vital component in guiding answer generation. Current paradigms typically generate CoT and answers directly for a given problem, diverging from human problem-solving strategies to some extent. Humans often solve problems by recalling analogous cases and leveraging their solutions to reason about the current task. Inspired by this cognitive process, we propose \textbf{MetaLadder}, a novel framework that explicitly prompts LLMs to recall and reflect on meta-problems, those structurally or semantically analogous problems, alongside their CoT solutions before addressing the target problem. Additionally, we introduce a problem-restating mechanism to enhance the model's comprehension of the target problem by regenerating the original question, which further improves reasoning accuracy. Therefore, the model can achieve reasoning transfer from analogical problems, mimicking human-like "learning from examples" and generalization abilities. Extensive experiments on mathematical benchmarks demonstrate that our MetaLadder significantly boosts LLMs' problem-solving accuracy, largely outperforming standard CoT-based methods (\textbf{10.3\%} accuracy gain) and other methods. Our code and data has been released at https://github.com/LHL3341/MetaLadder.
Abstract:In recent years, Large Language Models (LLMs) have demonstrated remarkable abilities in various natural language processing tasks. However, adapting these models to specialized domains using private datasets stored on resource-constrained edge devices, such as smartphones and personal computers, remains challenging due to significant privacy concerns and limited computational resources. Existing model adaptation methods either compromise data privacy by requiring data transmission or jeopardize model privacy by exposing proprietary LLM parameters. To address these challenges, we propose Prada, a novel privacy-preserving and efficient black-box LLM adaptation system using private on-device datasets. Prada employs a lightweight proxy model fine-tuned with Low-Rank Adaptation (LoRA) locally on user devices. During inference, Prada leverages the logits offset, i.e., difference in outputs between the base and adapted proxy models, to iteratively refine outputs from a remote black-box LLM. This offset-based adaptation approach preserves both data privacy and model privacy, as there is no need to share sensitive data or proprietary model parameters. Furthermore, we incorporate speculative decoding to further speed up the inference process of Prada, making the system practically deployable on bandwidth-constrained edge devices, enabling a more practical deployment of Prada. Extensive experiments on various downstream tasks demonstrate that Prada achieves performance comparable to centralized fine-tuning methods while significantly reducing computational overhead by up to 60% and communication costs by up to 80%.