Department of Computer Science and Technology, Tsinghua University, Beijing, China
Abstract:Audio-visual speech separation (AVSS) aims to extract a target speech signal from a mixed signal by leveraging both auditory and visual (lip movement) cues. However, most existing AVSS methods exhibit complex architectures and rely on future context, operating offline, which renders them unsuitable for real-time applications. Inspired by the pipeline of RTFSNet, we propose a novel streaming AVSS model, named Swift-Net, which enhances the causal processing capabilities required for real-time applications. Swift-Net adopts a lightweight visual feature extraction module and an efficient fusion module for audio-visual integration. Additionally, Swift-Net employs Grouped SRUs to integrate historical information across different feature spaces, thereby improving the utilization efficiency of historical information. We further propose a causal transformation template to facilitate the conversion of non-causal AVSS models into causal counterparts. Experiments on three standard benchmark datasets (LRS2, LRS3, and VoxCeleb2) demonstrated that under causal conditions, our proposed Swift-Net exhibited outstanding performance, highlighting the potential of this method for processing speech in complex environments.
Abstract:This paper focuses on Zero-Trust Foundation Models (ZTFMs), a novel paradigm that embeds zero-trust security principles into the lifecycle of foundation models (FMs) for Internet of Things (IoT) systems. By integrating core tenets, such as continuous verification, least privilege access (LPA), data confidentiality, and behavioral analytics into the design, training, and deployment of FMs, ZTFMs can enable secure, privacy-preserving AI across distributed, heterogeneous, and potentially adversarial IoT environments. We present the first structured synthesis of ZTFMs, identifying their potential to transform conventional trust-based IoT architectures into resilient, self-defending ecosystems. Moreover, we propose a comprehensive technical framework, incorporating federated learning (FL), blockchain-based identity management, micro-segmentation, and trusted execution environments (TEEs) to support decentralized, verifiable intelligence at the network edge. In addition, we investigate emerging security threats unique to ZTFM-enabled systems and evaluate countermeasures, such as anomaly detection, adversarial training, and secure aggregation. Through this analysis, we highlight key open research challenges in terms of scalability, secure orchestration, interpretable threat attribution, and dynamic trust calibration. This survey lays a foundational roadmap for secure, intelligent, and trustworthy IoT infrastructures powered by FMs.
Abstract:Target Speech Extraction (TSE) aims to isolate a target speaker's voice from a mixture of multiple speakers by leveraging speaker-specific cues, typically provided as auxiliary audio (a.k.a. cue audio). Although recent advancements in TSE have primarily employed discriminative models that offer high perceptual quality, these models often introduce unwanted artifacts, reduce naturalness, and are sensitive to discrepancies between training and testing environments. On the other hand, generative models for TSE lag in perceptual quality and intelligibility. To address these challenges, we present SoloSpeech, a novel cascaded generative pipeline that integrates compression, extraction, reconstruction, and correction processes. SoloSpeech features a speaker-embedding-free target extractor that utilizes conditional information from the cue audio's latent space, aligning it with the mixture audio's latent space to prevent mismatches. Evaluated on the widely-used Libri2Mix dataset, SoloSpeech achieves the new state-of-the-art intelligibility and quality in target speech extraction and speech separation tasks while demonstrating exceptional generalization on out-of-domain data and real-world scenarios.
Abstract:The rapid advancement and expanding applications of Audio Large Language Models (ALLMs) demand a rigorous understanding of their trustworthiness. However, systematic research on evaluating these models, particularly concerning risks unique to the audio modality, remains largely unexplored. Existing evaluation frameworks primarily focus on the text modality or address only a restricted set of safety dimensions, failing to adequately account for the unique characteristics and application scenarios inherent to the audio modality. We introduce AudioTrust-the first multifaceted trustworthiness evaluation framework and benchmark specifically designed for ALLMs. AudioTrust facilitates assessments across six key dimensions: fairness, hallucination, safety, privacy, robustness, and authentication. To comprehensively evaluate these dimensions, AudioTrust is structured around 18 distinct experimental setups. Its core is a meticulously constructed dataset of over 4,420 audio/text samples, drawn from real-world scenarios (e.g., daily conversations, emergency calls, voice assistant interactions), specifically designed to probe the multifaceted trustworthiness of ALLMs. For assessment, the benchmark carefully designs 9 audio-specific evaluation metrics, and we employ a large-scale automated pipeline for objective and scalable scoring of model outputs. Experimental results reveal the trustworthiness boundaries and limitations of current state-of-the-art open-source and closed-source ALLMs when confronted with various high-risk audio scenarios, offering valuable insights for the secure and trustworthy deployment of future audio models. Our platform and benchmark are available at https://github.com/JusperLee/AudioTrust.
Abstract:We introduce MMAR, a new benchmark designed to evaluate the deep reasoning capabilities of Audio-Language Models (ALMs) across massive multi-disciplinary tasks. MMAR comprises 1,000 meticulously curated audio-question-answer triplets, collected from real-world internet videos and refined through iterative error corrections and quality checks to ensure high quality. Unlike existing benchmarks that are limited to specific domains of sound, music, or speech, MMAR extends them to a broad spectrum of real-world audio scenarios, including mixed-modality combinations of sound, music, and speech. Each question in MMAR is hierarchically categorized across four reasoning layers: Signal, Perception, Semantic, and Cultural, with additional sub-categories within each layer to reflect task diversity and complexity. To further foster research in this area, we annotate every question with a Chain-of-Thought (CoT) rationale to promote future advancements in audio reasoning. Each item in the benchmark demands multi-step deep reasoning beyond surface-level understanding. Moreover, a part of the questions requires graduate-level perceptual and domain-specific knowledge, elevating the benchmark's difficulty and depth. We evaluate MMAR using a broad set of models, including Large Audio-Language Models (LALMs), Large Audio Reasoning Models (LARMs), Omni Language Models (OLMs), Large Language Models (LLMs), and Large Reasoning Models (LRMs), with audio caption inputs. The performance of these models on MMAR highlights the benchmark's challenging nature, and our analysis further reveals critical limitations of understanding and reasoning capabilities among current models. We hope MMAR will serve as a catalyst for future advances in this important but little-explored area.
Abstract:Existing causal speech separation models often underperform compared to non-causal models due to difficulties in retaining historical information. To address this, we propose the Time-Frequency Attention Cache Memory (TFACM) model, which effectively captures spatio-temporal relationships through an attention mechanism and cache memory (CM) for historical information storage. In TFACM, an LSTM layer captures frequency-relative positions, while causal modeling is applied to the time dimension using local and global representations. The CM module stores past information, and the causal attention refinement (CAR) module further enhances time-based feature representations for finer granularity. Experimental results showed that TFACM achieveed comparable performance to the SOTA TF-GridNet-Causal model, with significantly lower complexity and fewer trainable parameters. For more details, visit the project page: https://cslikai.cn/TFACM/.
Abstract:State estimation is challenging for 3D object tracking with high maneuverability, as the target's state transition function changes rapidly, irregularly, and is unknown to the estimator. Existing work based on interacting multiple model (IMM) achieves more accurate estimation than single-filter approaches through model combination, aligning appropriate models for different motion modes of the target object over time. However, two limitations of conventional IMM remain unsolved. First, the solution space of the model combination is constrained as the target's diverse kinematic properties in different directions are ignored. Second, the model combination weights calculated by the observation likelihood are not accurate enough due to the measurement uncertainty. In this paper, we propose a novel framework, DIMM, to effectively combine estimates from different motion models in each direction, thus increasing the 3D object tracking accuracy. First, DIMM extends the model combination solution space of conventional IMM from a hyperplane to a hypercube by designing a 3D-decoupled multi-hierarchy filter bank, which describes the target's motion with various-order linear models. Second, DIMM generates more reliable combination weight matrices through a differentiable adaptive fusion network for importance allocation rather than solely relying on the observation likelihood; it contains an attention-based twin delayed deep deterministic policy gradient (TD3) method with a hierarchical reward. Experiments demonstrate that DIMM significantly improves the tracking accuracy of existing state estimation methods by 31.61%~99.23%.
Abstract:Although deep learning has substantially advanced speech separation in recent years, most existing studies continue to prioritize separation quality while overlooking computational efficiency, an essential factor for low-latency speech processing in real-time applications. In this paper, we propose SepPrune, the first structured pruning framework specifically designed to compress deep speech separation models and reduce their computational cost. SepPrune begins by analyzing the computational structure of a given model to identify layers with the highest computational burden. It then introduces a differentiable masking strategy to enable gradient-driven channel selection. Based on the learned masks, SepPrune prunes redundant channels and fine-tunes the remaining parameters to recover performance. Extensive experiments demonstrate that this learnable pruning paradigm yields substantial advantages for channel pruning in speech separation models, outperforming existing methods. Notably, a model pruned with SepPrune can recover 85% of the performance of a pre-trained model (trained over hundreds of epochs) with only one epoch of fine-tuning, and achieves convergence 36$\times$ faster than training from scratch. Code is available at https://github.com/itsnotacie/SepPrune.
Abstract:EdgeIoT represents an approach that brings together mobile edge computing with Internet of Things (IoT) devices, allowing for data processing close to the data source. Sending source data to a server is bandwidth-intensive and may compromise privacy. Instead, federated learning allows each device to upload a shared machine-learning model update with locally processed data. However, this technique, which depends on aggregating model updates from various IoT devices, is vulnerable to attacks from malicious entities that may inject harmful data into the learning process. This paper introduces a new attack method targeting federated learning in EdgeIoT, known as data-independent model manipulation attack. This attack does not rely on training data from the IoT devices but instead uses an adversarial variational graph auto-encoder (AV-GAE) to create malicious model updates by analyzing benign model updates intercepted during communication. AV-GAE identifies and exploits structural relationships between benign models and their training data features. By manipulating these structural correlations, the attack maximizes the training loss of the federated learning system, compromising its overall effectiveness.
Abstract:The Transiting Exoplanet Survey Satellite (TESS) is a wide-field all-sky survey mission designed to detect Earth-sized exoplanets. After over four years photometric surveys, data from sectors 1-57, including approximately 1,050,000 light curves with a 2-minute cadence, were collected. By cross-matching the data with Gaia's variable star catalogue, we obtained labeled datasets for further analysis. Using a random forest classifier, we performed classification of variable stars and designed distinct classification processes for each subclass, 6770 EA, 2971 EW, 980 CEP, 8347 DSCT, 457 RRab, 404 RRc and 12348 ROT were identified. Each variable star was visually inspected to ensure the reliability and accuracy of the compiled catalog. Subsequently, we ultimately obtained 6046 EA, 3859 EW, 2058 CEP, 8434 DSCT, 482 RRab, 416 RRc, and 9694 ROT, and a total of 14092 new variable stars were discovered.