Chongqing Jinshan Science & Technology
Abstract:Face Presentation Attack Detection (PAD) demands incremental learning (IL) to combat evolving spoofing tactics and domains. Privacy regulations, however, forbid retaining past data, necessitating rehearsal-free IL (RF-IL). Vision-Language Pre-trained (VLP) models, with their prompt-tunable cross-modal representations, enable efficient adaptation to new spoofing styles and domains. Capitalizing on this strength, we propose \textbf{SVLP-IL}, a VLP-based RF-IL framework that balances stability and plasticity via \textit{Multi-Aspect Prompting} (MAP) and \textit{Selective Elastic Weight Consolidation} (SEWC). MAP isolates domain dependencies, enhances distribution-shift sensitivity, and mitigates forgetting by jointly exploiting universal and domain-specific cues. SEWC selectively preserves critical weights from previous tasks, retaining essential knowledge while allowing flexibility for new adaptations. Comprehensive experiments across multiple PAD benchmarks show that SVLP-IL significantly reduces catastrophic forgetting and enhances performance on unseen domains. SVLP-IL offers a privacy-compliant, practical solution for robust lifelong PAD deployment in RF-IL settings.
Abstract:Recent approaches employing imperceptible perturbations in input images have demonstrated promising potential to counter malicious manipulations in diffusion-based image editing systems. However, existing methods suffer from limited transferability in cross-model evaluations. To address this, we propose Transferable Defense Against Malicious Image Edits (TDAE), a novel bimodal framework that enhances image immunity against malicious edits through coordinated image-text optimization. Specifically, at the visual defense level, we introduce FlatGrad Defense Mechanism (FDM), which incorporates gradient regularization into the adversarial objective. By explicitly steering the perturbations toward flat minima, FDM amplifies immune robustness against unseen editing models. For textual enhancement protection, we propose an adversarial optimization paradigm named Dynamic Prompt Defense (DPD), which periodically refines text embeddings to align the editing outcomes of immunized images with those of the original images, then updates the images under optimized embeddings. Through iterative adversarial updates to diverse embeddings, DPD enforces the generation of immunized images that seek a broader set of immunity-enhancing features, thereby achieving cross-model transferability. Extensive experimental results demonstrate that our TDAE achieves state-of-the-art performance in mitigating malicious edits under both intra- and cross-model evaluations.
Abstract:Text-guided image editing via diffusion models, while powerful, raises significant concerns about misuse, motivating efforts to immunize images against unauthorized edits using imperceptible perturbations. Prevailing metrics for evaluating immunization success typically rely on measuring the visual dissimilarity between the output generated from a protected image and a reference output generated from the unprotected original. This approach fundamentally overlooks the core requirement of image immunization, which is to disrupt semantic alignment with attacker intent, regardless of deviation from any specific output. We argue that immunization success should instead be defined by the edited output either semantically mismatching the prompt or suffering substantial perceptual degradations, both of which thwart malicious intent. To operationalize this principle, we propose Synergistic Intermediate Feature Manipulation (SIFM), a method that strategically perturbs intermediate diffusion features through dual synergistic objectives: (1) maximizing feature divergence from the original edit trajectory to disrupt semantic alignment with the expected edit, and (2) minimizing feature norms to induce perceptual degradations. Furthermore, we introduce the Immunization Success Rate (ISR), a novel metric designed to rigorously quantify true immunization efficacy for the first time. ISR quantifies the proportion of edits where immunization induces either semantic failure relative to the prompt or significant perceptual degradations, assessed via Multimodal Large Language Models (MLLMs). Extensive experiments show our SIFM achieves the state-of-the-art performance for safeguarding visual content against malicious diffusion-based manipulation.
Abstract:Recent progress in text-to-image diffusion models has transformed image editing via text prompts, yet this also introduces significant ethical challenges from potential misuse in creating deceptive or harmful content. While current defenses seek to mitigate this risk by embedding imperceptible perturbations, their effectiveness is limited against malicious tampering. To address this issue, we propose a Dual Attention-Guided Noise Perturbation (DANP) immunization method that adds imperceptible perturbations to disrupt the model's semantic understanding and generation process. DANP functions over multiple timesteps to manipulate both cross-attention maps and the noise prediction process, using a dynamic threshold to generate masks that identify text-relevant and irrelevant regions. It then reduces attention in relevant areas while increasing it in irrelevant ones, thereby misguides the edit towards incorrect regions and preserves the intended targets. Additionally, our method maximizes the discrepancy between the injected noise and the model's predicted noise to further interfere with the generation. By targeting both attention and noise prediction mechanisms, DANP exhibits impressive immunity against malicious edits, and extensive experiments confirm that our method achieves state-of-the-art performance.
Abstract:This paper presents an energy-efficient transmission framework for federated learning (FL) in industrial Internet of Things (IIoT) environments with strict latency and energy constraints. Machinery subnetworks (SNs) collaboratively train a global model by uploading local updates to an edge server (ES), either directly or via neighboring SNs acting as decode-and-forward relays. To enhance communication efficiency, relays perform partial aggregation before forwarding the models to the ES, significantly reducing overhead and training latency. We analyze the convergence behavior of this relay-assisted FL scheme. To address the inherent energy efficiency (EE) challenges, we decompose the original non-convex optimization problem into sub-problems addressing computation and communication energy separately. An SN grouping algorithm categorizes devices into single-hop and two-hop transmitters based on latency minimization, followed by a relay selection mechanism. To improve FL reliability, we further maximize the number of SNs that meet the roundwise delay constraint, promoting broader participation and improved convergence stability under practical IIoT data distributions. Transmit power levels are then optimized to maximize EE, and a sequential parametric convex approximation (SPCA) method is proposed for joint configuration of system parameters. We further extend the EE formulation to the imperfect channel state information (ICSI). Simulation results demonstrate that the proposed framework significantly enhances convergence speed, reduces outage probability from 10-2 in single-hop to 10-6 and achieves substantial energy savings, with the SPCA approach reducing energy consumption by at least 2x compared to unaggregated cooperation and up to 6x over single-hop transmission.
Abstract:This letter presents a feature-guided adversarial framework, namely ComGAN, which is designed to reconstruct an incomplete fingerprint database by inferring missing received signal strength (RSS) values at unmeasured reference points (RPs). An auxiliary subnetwork is integrated into a conditional generative adversarial network (cGAN) to enable spatial feature learning. An optimization method is then developed to refine the RSS predictions by aggregating multiple prediction sets, achieving an improved localization performance. Experimental results demonstrate that the proposed scheme achieves a root mean squared error (RMSE) comparable to the ground-truth measurements while outperforming state-of-the-art reconstruction methods. When the reconstructed fingerprint is combined with measured data for training, the fingerprinting localization achieves accuracy comparable to models trained on fully measured datasets.
Abstract:Most research on hallucinations in Large Vision-Language Models (LVLMs) focuses on factual description tasks that prohibit any output absent from the image. However, little attention has been paid to hallucinations in voluntary imagination tasks, e.g., story writing, where the models are expected to generate novel content beyond the given image. In these tasks, it is inappropriate to simply regard such imagined novel content as hallucinations. To address this limitation, we introduce Voluntary-imagined Object Presence Evaluation (VOPE)-a novel method to assess LVLMs' hallucinations in voluntary imagination tasks via presence evaluation. Specifically, VOPE poses recheck-based questions to evaluate how an LVLM interprets the presence of the imagined objects in its own response. The consistency between the model's interpretation and the object's presence in the image is then used to determine whether the model hallucinates when generating the response. We apply VOPE to several mainstream LVLMs and hallucination mitigation methods, revealing two key findings: (1) most LVLMs hallucinate heavily during voluntary imagination, and their performance in presence evaluation is notably poor on imagined objects; (2) existing hallucination mitigation methods show limited effect in voluntary imagination tasks, making this an important direction for future research.
Abstract:Retrieval-Augmented Generation (RAG) improves large language models by retrieving external knowledge, often truncated into smaller chunks due to the input context window, which leads to information loss, resulting in response hallucinations and broken reasoning chains. Moreover, traditional RAG retrieves unstructured knowledge, introducing irrelevant details that hinder accurate reasoning. To address these issues, we propose TAdaRAG, a novel RAG framework for on-the-fly task-adaptive knowledge graph construction from external sources. Specifically, we design an intent-driven routing mechanism to a domain-specific extraction template, followed by supervised fine-tuning and a reinforcement learning-based implicit extraction mechanism, ensuring concise, coherent, and non-redundant knowledge integration. Evaluations on six public benchmarks and a real-world business benchmark (NowNewsQA) across three backbone models demonstrate that TAdaRAG outperforms existing methods across diverse domains and long-text tasks, highlighting its strong generalization and practical effectiveness.
Abstract:Modeling indoor radio propagation is crucial for wireless network planning and optimization. However, existing approaches often rely on labor-intensive manual modeling of geometry and material properties, resulting in limited scalability and efficiency. To overcome these challenges, this paper presents SenseRay-3D, a generalizable and physics-informed end-to-end framework that predicts three-dimensional (3D) path-loss heatmaps directly from RGB-D scans, thereby eliminating the need for explicit geometry reconstruction or material annotation. The proposed framework builds a sensing-driven voxelized scene representation that jointly encodes occupancy, electromagnetic material characteristics, and transmitter-receiver geometry, which is processed by a SwinUNETR-based neural network to infer environmental path-loss relative to free-space path-loss. A comprehensive synthetic indoor propagation dataset is further developed to validate the framework and to serve as a standardized benchmark for future research. Experimental results show that SenseRay-3D achieves a mean absolute error of 4.27 dB on unseen environments and supports real-time inference at 217 ms per sample, demonstrating its scalability, efficiency, and physical consistency. SenseRay-3D paves a new path for sense-driven, generalizable, and physics-consistent modeling of indoor propagation, marking a major leap beyond our pioneering EM DeepRay framework.
Abstract:Can Multimodal Large Language Models (MLLMs) discern confused objects that are visually present but audio-absent? To study this, we introduce a new benchmark, AV-ConfuseBench, which simulates an ``Audio-Visual Confusion'' scene by modifying the corresponding sound of an object in the video, e.g., mute the sounding object and ask MLLMs Is there a/an muted-object sound''. Experimental results reveal that MLLMs, such as Qwen2.5-Omni and Gemini 2.5, struggle to discriminate non-existent audio due to visually dominated reasoning. Motivated by this observation, we introduce RL-CoMM, a Reinforcement Learning-based Collaborative Multi-MLLM that is built upon the Qwen2.5-Omni foundation. RL-CoMM includes two stages: 1) To alleviate visually dominated ambiguities, we introduce an external model, a Large Audio Language Model (LALM), as the reference model to generate audio-only reasoning. Then, we design a Step-wise Reasoning Reward function that enables MLLMs to self-improve audio-visual reasoning with the audio-only reference. 2) To ensure an accurate answer prediction, we introduce Answer-centered Confidence Optimization to reduce the uncertainty of potential heterogeneous reasoning differences. Extensive experiments on audio-visual question answering and audio-visual hallucination show that RL-CoMM improves the accuracy by 10~30\% over the baseline model with limited training data. Follow: https://github.com/rikeilong/AVConfusion.