Alert button
Picture for Yang Gao

Yang Gao

Alert button

Look Before You Leap: Unveiling the Power of GPT-4V in Robotic Vision-Language Planning

Nov 29, 2023
Yingdong Hu, Fanqi Lin, Tong Zhang, Li Yi, Yang Gao

In this study, we are interested in imbuing robots with the capability of physically-grounded task planning. Recent advancements have shown that large language models (LLMs) possess extensive knowledge useful in robotic tasks, especially in reasoning and planning. However, LLMs are constrained by their lack of world grounding and dependence on external affordance models to perceive environmental information, which cannot jointly reason with LLMs. We argue that a task planner should be an inherently grounded, unified multimodal system. To this end, we introduce Robotic Vision-Language Planning (ViLa), a novel approach for long-horizon robotic planning that leverages vision-language models (VLMs) to generate a sequence of actionable steps. ViLa directly integrates perceptual data into its reasoning and planning process, enabling a profound understanding of commonsense knowledge in the visual world, including spatial layouts and object attributes. It also supports flexible multimodal goal specification and naturally incorporates visual feedback. Our extensive evaluation, conducted in both real-robot and simulated environments, demonstrates ViLa's superiority over existing LLM-based planners, highlighting its effectiveness in a wide array of open-world manipulation tasks.

Viaarxiv icon

TSST: A Benchmark and Evaluation Models for Text Speech-Style Transfer

Nov 14, 2023
Huashan Sun, Yixiao Wu, Yinghao Li, Jiawei Li, Yizhe Yang, Yang Gao

Text style is highly abstract, as it encompasses various aspects of a speaker's characteristics, habits, logical thinking, and the content they express. However, previous text-style transfer tasks have primarily focused on data-driven approaches, lacking in-depth analysis and research from the perspectives of linguistics and cognitive science. In this paper, we introduce a novel task called Text Speech-Style Transfer (TSST). The main objective is to further explore topics related to human cognition, such as personality and emotion, based on the capabilities of existing LLMs. Considering the objective of our task and the distinctive characteristics of oral speech in real-life scenarios, we trained multi-dimension (i.e. filler words, vividness, interactivity, emotionality) evaluation models for the TSST and validated their correlation with human assessments. We thoroughly analyze the performance of several large language models (LLMs) and identify areas where further improvement is needed. Moreover, driven by our evaluation models, we have released a new corpus that improves the capabilities of LLMs in generating text with speech-style characteristics. In summary, we present the TSST task, a new benchmark for style transfer and emphasizing human-oriented evaluation, exploring and advancing the performance of current LLMs.

* Working in progress 
Viaarxiv icon

Plug-and-Play Latent Feature Editing for Orientation-Adaptive Quantitative Susceptibility Mapping Neural Networks

Nov 14, 2023
Yang Gao, Zhuang Xiong, Shanshan Shan, Yin Liu, Pengfei Rong, Min Li, Alan H Wilman, G. Bruce Pike, Feng Liu, Hongfu Sun

Quantitative susceptibility mapping (QSM) is a post-processing technique for deriving tissue magnetic susceptibility distribution from MRI phase measurements. Deep learning (DL) algorithms hold great potential for solving the ill-posed QSM reconstruction problem. However, a significant challenge facing current DL-QSM approaches is their limited adaptability to magnetic dipole field orientation variations during training and testing. In this work, we propose a novel Orientation-Adaptive Latent Feature Editing (OA-LFE) module to learn the encoding of acquisition orientation vectors and seamlessly integrate them into the latent features of deep networks. Importantly, it can be directly Plug-and-Play (PnP) into various existing DL-QSM architectures, enabling reconstructions of QSM from arbitrary magnetic dipole orientations. Its effectiveness is demonstrated by combining the OA-LFE module into our previously proposed phase-to-susceptibility single-step instant QSM (iQSM) network, which was initially tailored for pure-axial acquisitions. The proposed OA-LFE-empowered iQSM, which we refer to as iQSM+, is trained in a self-supervised manner on a specially-designed simulation brain dataset. Comprehensive experiments are conducted on simulated and in vivo human brain datasets, encompassing subjects ranging from healthy individuals to those with pathological conditions. These experiments involve various MRI platforms (3T and 7T) and aim to compare our proposed iQSM+ against several established QSM reconstruction frameworks, including the original iQSM. The iQSM+ yields QSM images with significantly improved accuracies and mitigates artifacts, surpassing other state-of-the-art DL-QSM algorithms.

* 13pages, 9figures 
Viaarxiv icon

Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization

Nov 06, 2023
Kun Lei, Zhengmao He, Chenhao Lu, Kaizhe Hu, Yang Gao, Huazhe Xu

Combining offline and online reinforcement learning (RL) is crucial for efficient and safe learning. However, previous approaches treat offline and online learning as separate procedures, resulting in redundant designs and limited performance. We ask: Can we achieve straightforward yet effective offline and online learning without introducing extra conservatism or regularization? In this study, we propose Uni-o4, which utilizes an on-policy objective for both offline and online learning. Owning to the alignment of objectives in two phases, the RL agent can transfer between offline and online learning seamlessly. This property enhances the flexibility of the learning paradigm, allowing for arbitrary combinations of pretraining, fine-tuning, offline, and online learning. In the offline phase, specifically, Uni-o4 leverages diverse ensemble policies to address the mismatch issues between the estimated behavior policy and the offline dataset. Through a simple offline policy evaluation (OPE) approach, Uni-o4 can achieve multi-step policy improvement safely. We demonstrate that by employing the method above, the fusion of these two paradigms can yield superior offline initialization as well as stable and rapid online fine-tuning capabilities. Through real-world robot tasks, we highlight the benefits of this paradigm for rapid deployment in challenging, previously unseen real-world environments. Additionally, through comprehensive evaluations using numerous simulated benchmarks, we substantiate that our method achieves state-of-the-art performance in both offline and offline-to-online fine-tuning learning. Our website: .

* Our website: 
Viaarxiv icon

JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds

Nov 05, 2023
Saeed Saadatnejad, Yang Gao, Hamid Rezatofighi, Alexandre Alahi

Predicting future trajectories is critical in autonomous navigation, especially in preventing accidents involving humans, where a predictive agent's ability to anticipate in advance is of utmost importance. Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios, often due to the isolation of model components. To address this, we introduce a novel dataset for end-to-end trajectory forecasting, facilitating the evaluation of models in scenarios involving less-than-ideal preceding modules such as tracking. This dataset, an extension of the JRDB dataset, provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective. The objective is to predict the future positions of agents relative to the robot using raw sensory input data. It bridges the gap between isolated models and practical applications, promoting a deeper understanding of navigation dynamics. Additionally, we introduce a novel metric for assessing trajectory forecasting models in real-world scenarios where ground-truth identities are inaccessible, addressing issues related to undetected or over-detected agents. Researchers are encouraged to use our benchmark for model evaluation and benchmarking.

Viaarxiv icon

The Eval4NLP 2023 Shared Task on Prompting Large Language Models as Explainable Metrics

Oct 30, 2023
Christoph Leiter, Juri Opitz, Daniel Deutsch, Yang Gao, Rotem Dror, Steffen Eger

With an increasing number of parameters and pre-training data, generative large language models (LLMs) have shown remarkable capabilities to solve tasks with minimal or no task-related examples. Notably, LLMs have been successfully employed as evaluation metrics in text generation tasks. Within this context, we introduce the Eval4NLP 2023 shared task that asks participants to explore prompting and score extraction for machine translation (MT) and summarization evaluation. Specifically, we propose a novel competition setting in which we select a list of allowed LLMs and disallow fine-tuning to ensure a focus on prompting. We present an overview of participants' approaches and evaluate them on a new reference-free test set spanning three language pairs for MT and a summarization dataset. Notably, despite the task's restrictions, the best-performing systems achieve results on par with or even surpassing recent reference-free metrics developed using larger models, including GEMBA and Comet-Kiwi-XXL. Finally, as a separate track, we perform a small-scale human evaluation of the plausibility of explanations given by the LLMs.

Viaarxiv icon

MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications

Oct 29, 2023
Yizhe Yang, Huashan Sun, Jiawei Li, Runheng Liu, Yinghao Li, Yuhang Liu, Heyan Huang, Yang Gao

Figure 1 for MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications
Figure 2 for MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications
Figure 3 for MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications
Figure 4 for MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications

Large Language Models (LLMs) have demonstrated remarkable performance across various natural language tasks, marking significant strides towards general artificial intelligence. While general artificial intelligence is leveraged by developing increasingly large-scale models, there could be another branch to develop lightweight custom models that better serve certain domains, taking into account the high cost of training and deploying LLMs and the scarcity of resources. In this paper, we present MindLLM, a novel series of bilingual lightweight large language models, trained from scratch, alleviating such burdens by offering models with 1.3 billion and 3 billion parameters. A thorough account of experiences accrued during large model development is given, covering every step of the process, including data construction, model architecture, evaluation, and applications. Such insights are hopefully valuable for fellow academics and developers. MindLLM consistently matches or surpasses the performance of other open-source larger models on some public benchmarks. We also introduce an innovative instruction tuning framework tailored for smaller models to enhance their capabilities efficiently. Moreover, we explore the application of MindLLM in specific vertical domains such as law and finance, underscoring the agility and adaptability of our lightweight models.

* Working in progress 
Viaarxiv icon

DexCatch: Learning to Catch Arbitrary Objects with Dexterous Hands

Oct 13, 2023
Fengbo Lan, Shengjie Wang, Yunzhe Zhang, Haotian Xu, Oluwatosin Oseni, Yang Gao, Tao Zhang

Figure 1 for DexCatch: Learning to Catch Arbitrary Objects with Dexterous Hands
Figure 2 for DexCatch: Learning to Catch Arbitrary Objects with Dexterous Hands
Figure 3 for DexCatch: Learning to Catch Arbitrary Objects with Dexterous Hands
Figure 4 for DexCatch: Learning to Catch Arbitrary Objects with Dexterous Hands

Achieving human-like dexterous manipulation remains a crucial area of research in robotics. Current research focuses on improving the success rate of pick-and-place tasks. Compared with pick-and-place, throw-catching behavior has the potential to increase picking speed without transporting objects to their destination. However, dynamic dexterous manipulation poses a major challenge for stable control due to a large number of dynamic contacts. In this paper, we propose a Stability-Constrained Reinforcement Learning (SCRL) algorithm to learn to catch diverse objects with dexterous hands. The SCRL algorithm outperforms baselines by a large margin, and the learned policies show strong zero-shot transfer performance on unseen objects. Remarkably, even though the object in a hand facing sideward is extremely unstable due to the lack of support from the palm, our method can still achieve a high level of success in the most challenging task. Video demonstrations of learned behaviors and the code can be found on the supplementary website.

Viaarxiv icon

Imitation Learning from Observation with Automatic Discount Scheduling

Oct 12, 2023
Yuyang Liu, Weijun Dong, Yingdong Hu, Chuan Wen, Zhao-Heng Yin, Chongjie Zhang, Yang Gao

Figure 1 for Imitation Learning from Observation with Automatic Discount Scheduling
Figure 2 for Imitation Learning from Observation with Automatic Discount Scheduling
Figure 3 for Imitation Learning from Observation with Automatic Discount Scheduling
Figure 4 for Imitation Learning from Observation with Automatic Discount Scheduling

Humans often acquire new skills through observation and imitation. For robotic agents, learning from the plethora of unlabeled video demonstration data available on the Internet necessitates imitating the expert without access to its action, presenting a challenge known as Imitation Learning from Observations (ILfO). A common approach to tackle ILfO problems is to convert them into inverse reinforcement learning problems, utilizing a proxy reward computed from the agent's and the expert's observations. Nonetheless, we identify that tasks characterized by a progress dependency property pose significant challenges for such approaches; in these tasks, the agent needs to initially learn the expert's preceding behaviors before mastering the subsequent ones. Our investigation reveals that the main cause is that the reward signals assigned to later steps hinder the learning of initial behaviors. To address this challenge, we present a novel ILfO framework that enables the agent to master earlier behaviors before advancing to later ones. We introduce an Automatic Discount Scheduling (ADS) mechanism that adaptively alters the discount factor in reinforcement learning during the training phase, prioritizing earlier rewards initially and gradually engaging later rewards only when the earlier behaviors have been mastered. Our experiments, conducted on nine Meta-World tasks, demonstrate that our method significantly outperforms state-of-the-art methods across all tasks, including those that are unsolvable by them.

Viaarxiv icon