Alert button
Picture for Francesco Romano

Francesco Romano

Alert button

Real-World Fluid Directed Rigid Body Control via Deep Reinforcement Learning

Add code
Bookmark button
Alert button
Feb 08, 2024
Mohak Bhardwaj, Thomas Lampe, Michael Neunert, Francesco Romano, Abbas Abdolmaleki, Arunkumar Byravan, Markus Wulfmeier, Martin Riedmiller, Jonas Buchli

Viaarxiv icon

Barkour: Benchmarking Animal-level Agility with Quadruped Robots

Add code
Bookmark button
Alert button
May 24, 2023
Ken Caluwaerts, Atil Iscen, J. Chase Kew, Wenhao Yu, Tingnan Zhang, Daniel Freeman, Kuang-Huei Lee, Lisa Lee, Stefano Saliceti, Vincent Zhuang, Nathan Batchelor, Steven Bohez, Federico Casarini, Jose Enrique Chen, Omar Cortes, Erwin Coumans, Adil Dostmohamed, Gabriel Dulac-Arnold, Alejandro Escontrela, Erik Frey, Roland Hafner, Deepali Jain, Bauyrjan Jyenis, Yuheng Kuang, Edward Lee, Linda Luu, Ofir Nachum, Ken Oslund, Jason Powell, Diego Reyes, Francesco Romano, Feresteh Sadeghi, Ron Sloat, Baruch Tabanpour, Daniel Zheng, Michael Neunert, Raia Hadsell, Nicolas Heess, Francesco Nori, Jeff Seto, Carolina Parada, Vikas Sindhwani, Vincent Vanhoucke, Jie Tan

Figure 1 for Barkour: Benchmarking Animal-level Agility with Quadruped Robots
Figure 2 for Barkour: Benchmarking Animal-level Agility with Quadruped Robots
Figure 3 for Barkour: Benchmarking Animal-level Agility with Quadruped Robots
Figure 4 for Barkour: Benchmarking Animal-level Agility with Quadruped Robots
Viaarxiv icon

Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors

Add code
Bookmark button
Alert button
Mar 31, 2022
Steven Bohez, Saran Tunyasuvunakool, Philemon Brakel, Fereshteh Sadeghi, Leonard Hasenclever, Yuval Tassa, Emilio Parisotto, Jan Humplik, Tuomas Haarnoja, Roland Hafner, Markus Wulfmeier, Michael Neunert, Ben Moran, Noah Siegel, Andrea Huber, Francesco Romano, Nathan Batchelor, Federico Casarini, Josh Merel, Raia Hadsell, Nicolas Heess

Figure 1 for Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors
Figure 2 for Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors
Figure 3 for Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors
Figure 4 for Imitate and Repurpose: Learning Reusable Robot Movement Skills From Human and Animal Behaviors
Viaarxiv icon

Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics

Add code
Bookmark button
Alert button
Jan 02, 2020
Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Jost Tobias Springenberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, Martin Riedmiller

Figure 1 for Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics
Figure 2 for Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics
Figure 3 for Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics
Figure 4 for Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics
Viaarxiv icon

Modelling Generalized Forces with Reinforcement Learning for Sim-to-Real Transfer

Add code
Bookmark button
Alert button
Oct 21, 2019
Rae Jeong, Jackie Kay, Francesco Romano, Thomas Lampe, Tom Rothorl, Abbas Abdolmaleki, Tom Erez, Yuval Tassa, Francesco Nori

Figure 1 for Modelling Generalized Forces with Reinforcement Learning for Sim-to-Real Transfer
Figure 2 for Modelling Generalized Forces with Reinforcement Learning for Sim-to-Real Transfer
Figure 3 for Modelling Generalized Forces with Reinforcement Learning for Sim-to-Real Transfer
Figure 4 for Modelling Generalized Forces with Reinforcement Learning for Sim-to-Real Transfer
Viaarxiv icon

A Generic Synchronous Dataflow Architecture to Rapidly Prototype and Deploy Robot Controllers

Add code
Bookmark button
Alert button
Jun 05, 2019
Diego Ferigo, Silvio Traversaro, Francesco Romano, Daniele Pucci

Figure 1 for A Generic Synchronous Dataflow Architecture to Rapidly Prototype and Deploy Robot Controllers
Figure 2 for A Generic Synchronous Dataflow Architecture to Rapidly Prototype and Deploy Robot Controllers
Figure 3 for A Generic Synchronous Dataflow Architecture to Rapidly Prototype and Deploy Robot Controllers
Figure 4 for A Generic Synchronous Dataflow Architecture to Rapidly Prototype and Deploy Robot Controllers
Viaarxiv icon

A Control Architecture with Online Predictive Planning for Position and Torque Controlled Walking of Humanoid Robots

Add code
Bookmark button
Alert button
Jul 14, 2018
Stefano Dafarra, Gabriele Nava, Marie Charbonneau, Nuno Guedelha, Francisco Andrade, Silvio Traversaro, Luca Fiorio, Francesco Romano, Francesco Nori, Giorgio Metta, Daniele Pucci

Figure 1 for A Control Architecture with Online Predictive Planning for Position and Torque Controlled Walking of Humanoid Robots
Figure 2 for A Control Architecture with Online Predictive Planning for Position and Torque Controlled Walking of Humanoid Robots
Figure 3 for A Control Architecture with Online Predictive Planning for Position and Torque Controlled Walking of Humanoid Robots
Figure 4 for A Control Architecture with Online Predictive Planning for Position and Torque Controlled Walking of Humanoid Robots
Viaarxiv icon

Modeling and Control of Humanoid Robots in Dynamic Environments: iCub Balancing on a Seesaw

Add code
Bookmark button
Alert button
Mar 09, 2018
Gabriele Nava, Daniele Pucci, Nuno Guedelha, Silvio Traversaro, Francesco Romano, Stefano Dafarra, Francesco Nori

Figure 1 for Modeling and Control of Humanoid Robots in Dynamic Environments: iCub Balancing on a Seesaw
Figure 2 for Modeling and Control of Humanoid Robots in Dynamic Environments: iCub Balancing on a Seesaw
Figure 3 for Modeling and Control of Humanoid Robots in Dynamic Environments: iCub Balancing on a Seesaw
Figure 4 for Modeling and Control of Humanoid Robots in Dynamic Environments: iCub Balancing on a Seesaw
Viaarxiv icon

A Predictive Momentum-Based Whole-Body Torque Controller: Theory and Simulations for the iCub Stepping

Add code
Bookmark button
Alert button
Jul 28, 2017
Stefano Dafarra, Francesco Romano, Gabriele Nava, Francesco Nori

Figure 1 for A Predictive Momentum-Based Whole-Body Torque Controller: Theory and Simulations for the iCub Stepping
Figure 2 for A Predictive Momentum-Based Whole-Body Torque Controller: Theory and Simulations for the iCub Stepping
Figure 3 for A Predictive Momentum-Based Whole-Body Torque Controller: Theory and Simulations for the iCub Stepping
Viaarxiv icon

Stability Analysis and Design of Momentum-based Controllers for Humanoid Robots

Add code
Bookmark button
Alert button
Jul 16, 2017
Gabriele Nava, Francesco Romano, Francesco Nori, Daniele Pucci

Figure 1 for Stability Analysis and Design of Momentum-based Controllers for Humanoid Robots
Figure 2 for Stability Analysis and Design of Momentum-based Controllers for Humanoid Robots
Figure 3 for Stability Analysis and Design of Momentum-based Controllers for Humanoid Robots
Figure 4 for Stability Analysis and Design of Momentum-based Controllers for Humanoid Robots
Viaarxiv icon