Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Representation Matters: Improving Perception and Exploration for Robotics

Nov 03, 2020
Markus Wulfmeier, Arunkumar Byravan, Tim Hertweck, Irina Higgins, Ankush Gupta, Tejas Kulkarni, Malcolm Reynolds, Denis Teplyashin, Roland Hafner, Thomas Lampe, Martin Riedmiller


  Access Paper or Ask Questions

"What, not how": Solving an under-actuated insertion task from scratch

Oct 30, 2020
Giulia Vezzani, Michael Neunert, Markus Wulfmeier, Rae Jeong, Thomas Lampe, Noah Siegel, Roland Hafner, Abbas Abdolmaleki, Martin Riedmiller, Francesco Nori


  Access Paper or Ask Questions

Towards General and Autonomous Learning of Core Skills: A Case Study in Locomotion

Aug 06, 2020
Roland Hafner, Tim Hertweck, Philipp Klöppner, Michael Bloesch, Michael Neunert, Markus Wulfmeier, Saran Tunyasuvunakool, Nicolas Heess, Martin Riedmiller


  Access Paper or Ask Questions

Data-efficient Hindsight Off-policy Option Learning

Jul 30, 2020
Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim Hertweck, Michael Neunert, Dhruva Tirumala, Noah Siegel, Nicolas Heess, Martin Riedmiller


  Access Paper or Ask Questions

Simple Sensor Intentions for Exploration

May 15, 2020
Tim Hertweck, Martin Riedmiller, Michael Bloesch, Jost Tobias Springenberg, Noah Siegel, Markus Wulfmeier, Roland Hafner, Nicolas Heess


  Access Paper or Ask Questions

Keep Doing What Worked: Behavioral Modelling Priors for Offline Reinforcement Learning

Feb 23, 2020
Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, Martin Riedmiller

* To appear in ICLR 2020 

  Access Paper or Ask Questions

Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics

Jan 02, 2020
Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier, Thomas Lampe, Jost Tobias Springenberg, Roland Hafner, Francesco Romano, Jonas Buchli, Nicolas Heess, Martin Riedmiller

* Presented at the 3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan. Video: https://youtu.be/eUqQDLQXb7I 

  Access Paper or Ask Questions

Imagined Value Gradients: Model-Based Policy Optimization with Transferable Latent Dynamics Models

Oct 09, 2019
Arunkumar Byravan, Jost Tobias Springenberg, Abbas Abdolmaleki, Roland Hafner, Michael Neunert, Thomas Lampe, Noah Siegel, Nicolas Heess, Martin Riedmiller

* To appear at the 3rd annual Conference on Robot Learning, Osaka, Japan (CoRL 2019). 24 pages including appendix (main paper - 8 pages) 

  Access Paper or Ask Questions

Regularized Hierarchical Policies for Compositional Transfer in Robotics

Jun 27, 2019
Markus Wulfmeier, Abbas Abdolmaleki, Roland Hafner, Jost Tobias Springenberg, Michael Neunert, Tim Hertweck, Thomas Lampe, Noah Siegel, Nicolas Heess, Martin Riedmiller

* Preprint. Under review. Addressed typos 

  Access Paper or Ask Questions

Simultaneously Learning Vision and Feature-based Control Policies for Real-world Ball-in-a-Cup

Feb 18, 2019
Devin Schwab, Tobias Springenberg, Murilo F. Martins, Thomas Lampe, Michael Neunert, Abbas Abdolmaleki, Tim Hertweck, Roland Hafner, Francesco Nori, Martin Riedmiller

* Videos can be found at https://sites.google.com/view/rss-2019-sawyer-bic/ 

  Access Paper or Ask Questions

Learning by Playing - Solving Sparse Reward Tasks from Scratch

Feb 28, 2018
Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, Jost Tobias Springenberg

* A video of the rich set of learned behaviours can be found at https://youtu.be/mPKyvocNe_M 

  Access Paper or Ask Questions

PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured State Representations

Jul 24, 2017
Rico Jonschkowski, Roland Hafner, Jonathan Scholz, Martin Riedmiller

* Accepted at Robotics: Science and Systems (RSS 2017) Workshop -- New Frontiers for Deep Learning in Robotics http://juxi.net/workshop/deep-learning-rss-2017/ 

  Access Paper or Ask Questions

Data-efficient Deep Reinforcement Learning for Dexterous Manipulation

Apr 10, 2017
Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, Martin Riedmiller

* 12 pages, 5 Figures 

  Access Paper or Ask Questions