Tsinghua University
Abstract:High-fidelity and controllable 3D simulation is essential for addressing the long-tail data scarcity in Autonomous Driving (AD), yet existing methods struggle to simultaneously achieve photorealistic rendering and interactive traffic editing. Current approaches often falter in large-angle novel view synthesis and suffer from geometric or lighting artifacts during asset manipulation. To address these challenges, we propose SymDrive, a unified diffusion-based framework capable of joint high-quality rendering and scene editing. We introduce a Symmetric Auto-regressive Online Restoration paradigm, which constructs paired symmetric views to recover fine-grained details via a ground-truth-guided dual-view formulation and utilizes an auto-regressive strategy for consistent lateral view generation. Furthermore, we leverage this restoration capability to enable a training-free harmonization mechanism, treating vehicle insertion as context-aware inpainting to ensure seamless lighting and shadow consistency. Extensive experiments demonstrate that SymDrive achieves state-of-the-art performance in both novel-view enhancement and realistic 3D vehicle insertion.
Abstract:Accurate characterization of hippocampal substructure is crucial for detecting subtle structural changes and identifying early neurodegenerative biomarkers. However, high inter-subject variability and complex folding pattern of human hippocampus hinder consistent cross-subject and longitudinal analysis. Most existing approaches rely on subject-specific modelling and lack a stable intrinsic coordinate system to accommodate anatomical variability, which limits their ability to establish reliable inter- and intra-individual correspondence. To address this, we propose HippMetric, a skeletal representation (s-rep)-based framework for hippocampal substructural morphometry and point-wise correspondence across individuals and scans. HippMetric builds on the Axis-Referenced Morphometric Model (ARMM) and employs a deformable skeletal coordinate system aligned with hippocampal anatomy and function, providing a biologically grounded reference for correspondence. Our framework comprises two core modules: a skeletal-based coordinate system that respects the hippocampus' conserved longitudinal lamellar architecture, in which functional units (lamellae) are stacked perpendicular to the long-axis, enabling anatomically consistent localization across subjects and time; and individualized s-reps generated through surface reconstruction, deformation, and geometrically constrained spoke refinement, enforcing boundary adherence, orthogonality and non-intersection to produce mathematically valid skeletal geometry. Extensive experiments on two international cohorts demonstrate that HippMetric achieves higher accuracy, reliability, and correspondence stability compared to existing shape models.
Abstract:Recent advances in reinforcement learning for large language models have converged on increasing complexity: multi-stage training pipelines, dynamic hyperparameter schedules, and curriculum learning strategies. This raises a fundamental question: \textbf{Is this complexity necessary?} We present \textbf{JustRL}, a minimal approach using single-stage training with fixed hyperparameters that achieves state-of-the-art performance on two 1.5B reasoning models (54.9\% and 64.3\% average accuracy across nine mathematical benchmarks) while using 2$\times$ less compute than sophisticated approaches. The same hyperparameters transfer across both models without tuning, and training exhibits smooth, monotonic improvement over 4,000+ steps without the collapses or plateaus that typically motivate interventions. Critically, ablations reveal that adding ``standard tricks'' like explicit length penalties and robust verifiers may degrade performance by collapsing exploration. These results suggest that the field may be adding complexity to solve problems that disappear with a stable, scaled-up baseline. We release our models and code to establish a simple, validated baseline for the community.
Abstract:Multi-period portfolio optimization is important for real portfolio management, as it accounts for transaction costs, path-dependent risks, and the intertemporal structure of trading decisions that single-period models cannot capture. Classical methods usually follow a two-stage framework: machine learning algorithms are employed to produce forecasts that closely fit the realized returns, and the predicted values are then used in a downstream portfolio optimization problem to determine the asset weights. This separation leads to a fundamental misalignment between predictions and decision outcomes, while also ignoring the impact of transaction costs. To bridge this gap, recent studies have proposed the idea of end-to-end learning, integrating the two stages into a single pipeline. This paper introduces IPMO (Integrated Prediction and Multi-period Portfolio Optimization), a model for multi-period mean-variance portfolio optimization with turnover penalties. The predictor generates multi-period return forecasts that parameterize a differentiable convex optimization layer, which in turn drives learning via portfolio performance. For scalability, we introduce a mirror-descent fixed-point (MDFP) differentiation scheme that avoids factorizing the Karush-Kuhn-Tucker (KKT) systems, which thus yields stable implicit gradients and nearly scale-insensitive runtime as the decision horizon grows. In experiments with real market data and two representative time-series prediction models, the IPMO method consistently outperforms the two-stage benchmarks in risk-adjusted performance net of transaction costs and achieves more coherent allocation paths. Our results show that integrating machine learning prediction with optimization in the multi-period setting improves financial outcomes and remains computationally tractable.
Abstract:Legal relations form a highly consequential analytical framework of civil law system, serving as a crucial foundation for resolving disputes and realizing values of the rule of law in judicial practice. However, legal relations in Chinese civil cases remain underexplored in the field of legal artificial intelligence (legal AI), largely due to the absence of comprehensive schemas. In this work, we firstly introduce a comprehensive schema, which contains a hierarchical taxonomy and definitions of arguments, for AI systems to capture legal relations in Chinese civil cases. Based on this schema, we then formulate legal relation extraction task and present LexRel, an expert-annotated benchmark for legal relation extraction in Chinese civil law. We use LexRel to evaluate state-of-the-art large language models (LLMs) on legal relation extractions, showing that current LLMs exhibit significant limitations in accurately identifying civil legal relations. Furthermore, we demonstrate that incorporating legal relations information leads to consistent performance gains on other downstream legal AI tasks.
Abstract:While Transformer-based models have demonstrated remarkable language modeling performance, their high complexities result in high costs when processing long contexts. In contrast, recurrent neural networks (RNNs) such as linear attention and state space models have gained popularity due to their constant per-token complexities. However, these recurrent models struggle with tasks that require accurate recall of contextual information from long contexts, because all contextual information is compressed into a constant-size recurrent state. Previous works have shown that recall ability is positively correlated with the recurrent state size, yet directly training RNNs with larger recurrent states results in high training costs. In this paper, we introduce StateX, a training pipeline for efficiently expanding the states of pre-trained RNNs through post-training. For two popular classes of RNNs, linear attention and state space models, we design post-training architectural modifications to scale up the state size with no or negligible increase in model parameters. Experiments on models up to 1.3B parameters demonstrate that StateX efficiently enhances the recall and in-context learning ability of RNNs without incurring high post-training costs or compromising other capabilities.
Abstract:In this paper, we survey recent advances in Reinforcement Learning (RL) for reasoning with Large Language Models (LLMs). RL has achieved remarkable success in advancing the frontier of LLM capabilities, particularly in addressing complex logical tasks such as mathematics and coding. As a result, RL has emerged as a foundational methodology for transforming LLMs into LRMs. With the rapid progress of the field, further scaling of RL for LRMs now faces foundational challenges not only in computational resources but also in algorithm design, training data, and infrastructure. To this end, it is timely to revisit the development of this domain, reassess its trajectory, and explore strategies to enhance the scalability of RL toward Artificial SuperIntelligence (ASI). In particular, we examine research applying RL to LLMs and LRMs for reasoning abilities, especially since the release of DeepSeek-R1, including foundational components, core problems, training resources, and downstream applications, to identify future opportunities and directions for this rapidly evolving area. We hope this review will promote future research on RL for broader reasoning models. Github: https://github.com/TsinghuaC3I/Awesome-RL-for-LRMs
Abstract:Molecular structure elucidation from spectra is a foundational problem in chemistry, with profound implications for compound identification, synthesis, and drug development. Traditional methods rely heavily on expert interpretation and lack scalability. Pioneering machine learning methods have introduced retrieval-based strategies, but their reliance on finite libraries limits generalization to novel molecules. Generative models offer a promising alternative, yet most adopt autoregressive SMILES-based architectures that overlook 3D geometry and struggle to integrate diverse spectral modalities. In this work, we present DiffSpectra, a generative framework that directly infers both 2D and 3D molecular structures from multi-modal spectral data using diffusion models. DiffSpectra formulates structure elucidation as a conditional generation process. Its denoising network is parameterized by Diffusion Molecule Transformer, an SE(3)-equivariant architecture that integrates topological and geometric information. Conditioning is provided by SpecFormer, a transformer-based spectral encoder that captures intra- and inter-spectral dependencies from multi-modal spectra. Extensive experiments demonstrate that DiffSpectra achieves high accuracy in structure elucidation, recovering exact structures with 16.01% top-1 accuracy and 96.86% top-20 accuracy through sampling. The model benefits significantly from 3D geometric modeling, SpecFormer pre-training, and multi-modal conditioning. These results highlight the effectiveness of spectrum-conditioned diffusion modeling in addressing the challenge of molecular structure elucidation. To our knowledge, DiffSpectra is the first framework to unify multi-modal spectral reasoning and joint 2D/3D generative modeling for de novo molecular structure elucidation.
Abstract:Diffusion-based language models (dLLMs) have emerged as a promising alternative to traditional autoregressive LLMs by enabling parallel token generation and significantly reducing inference latency. However, existing sampling strategies for dLLMs, such as confidence-based or semi-autoregressive decoding, often suffer from static behavior, leading to suboptimal efficiency and limited flexibility. In this paper, we propose SlowFast Sampling, a novel dynamic sampling strategy that adaptively alternates between exploratory and accelerated decoding stages. Our method is guided by three golden principles: certainty principle, convergence principle, and positional principle, which govern when and where tokens can be confidently and efficiently decoded. We further integrate our strategy with dLLM-Cache to reduce redundant computation. Extensive experiments across benchmarks and models show that SlowFast Sampling achieves up to 15.63$\times$ speedup on LLaDA with minimal accuracy drop, and up to 34.22$\times$ when combined with caching. Notably, our approach outperforms strong autoregressive baselines like LLaMA3 8B in throughput, demonstrating that well-designed sampling can unlock the full potential of dLLMs for fast and high-quality generation.




Abstract:Retrieval-Augmented Generation (RAG) improves factual accuracy by grounding responses in external knowledge. However, existing methods typically rely on a single source, either unstructured text or structured knowledge. Moreover, they lack cognitively inspired mechanisms for activating relevant knowledge. To address these issues, we propose KG-Infused RAG, a framework that integrates KGs into RAG systems to implement spreading activation, a cognitive process that enables concept association and inference. KG-Infused RAG retrieves KG facts, expands the query accordingly, and enhances generation by combining corpus passages with structured facts, enabling interpretable, multi-source retrieval grounded in semantic structure. We further improve KG-Infused RAG via preference learning on sampled key stages in the pipeline. Experiments on five QA benchmarks show that KG-Infused RAG consistently outperforms vanilla RAG (by 3.8% to 13.8%). Additionally, when integrated into Self-RAG, KG-Infused RAG brings further performance gains, demonstrating its effectiveness and versatility as a plug-and-play enhancement module for corpus-based RAG methods.