Tsinghua University
Abstract:Data-parallel (DP) training with synchronous all-reduce is a dominant paradigm for full-parameter fine-tuning of large language models (LLMs). While parameter synchronization guarantees numerical equivalence of model weights after each iteration, it does not necessarily imply alignment of worker-level optimization dynamics before gradient aggregation. This paper identifies and studies this latent mismatch, termed \emph{silent inconsistency}, where cross-worker divergence in losses and gradients can remain invisible under conventional aggregated monitoring signals. We propose a lightweight, model-agnostic diagnostic framework that quantifies worker-level consistency using training signals readily available in standard pipelines. Specifically, we introduce three complementary metrics: loss dispersion, gradient-norm dispersion, and gradient-direction consistency measured by inter-worker cosine similarity. The proposed metrics incur negligible overhead and require no modification to model architecture, synchronization mechanisms, or optimization algorithms. We validate the framework by fully fine-tuning the 1B-parameter \texttt{openPangu-Embedded-1B-V1.1} model on the \texttt{tatsu-lab/alpaca} dataset using an 8-NPU DP setup, under controlled perturbations of cross-rank stochasticity. Experimental results show that progressively desynchronized data shuffling and random seeds lead to substantial increases in loss/gradient dispersion and reduced directional alignment, despite smooth globally averaged loss curves. These findings demonstrate that the proposed indicators provide actionable visibility into hidden instability modes in large-scale DP fine-tuning, enabling more reliable diagnosis and configuration assessment.
Abstract:Differentiating through the solution of a quadratic program (QP) is a central problem in differentiable optimization. Most existing approaches differentiate through the Karush--Kuhn--Tucker (KKT) system, but their computational cost and numerical robustness can degrade at scale. To address these limitations, we propose dXPP, a penalty-based differentiation framework that decouples QP solving from differentiation. In the solving step (forward pass), dXPP is solver-agnostic and can leverage any black-box QP solver. In the differentiation step (backward pass), we map the solution to a smooth approximate penalty problem and implicitly differentiate through it, requiring only the solution of a much smaller linear system in the primal variables. This approach bypasses the difficulties inherent in explicit KKT differentiation and significantly improves computational efficiency and robustness. We evaluate dXPP on various tasks, including randomly generated QPs, large-scale sparse projection problems, and a real-world multi-period portfolio optimization task. Empirical results demonstrate that dXPP is competitive with KKT-based differentiation methods and achieves substantial speedups on large-scale problems.
Abstract:The evolution of large language models (LLMs) towards applications with ultra-long contexts faces challenges posed by the high computational and memory costs of the Transformer architecture. While existing sparse and linear attention mechanisms attempt to mitigate these issues, they typically involve a trade-off between memory efficiency and model performance. This paper introduces MiniCPM-SALA, a 9B-parameter hybrid architecture that integrates the high-fidelity long-context modeling of sparse attention (InfLLM-V2) with the global efficiency of linear attention (Lightning Attention). By employing a layer selection algorithm to integrate these mechanisms in a 1:3 ratio and utilizing a hybrid positional encoding (HyPE), the model maintains efficiency and performance for long-context tasks. Furthermore, we introduce a cost-effective continual training framework that transforms pre-trained Transformer-based models into hybrid models, which reduces training costs by approximately 75% compared to training from scratch. Extensive experiments show that MiniCPM-SALA maintains general capabilities comparable to full-attention models while offering improved efficiency. On a single NVIDIA A6000D GPU, the model achieves up to 3.5x the inference speed of the full-attention model at the sequence length of 256K tokens and supports context lengths of up to 1M tokens, a scale where traditional full-attention 8B models fail because of memory constraints.
Abstract:Multivariate time series forecasting involves two qualitatively distinct factors: (i) stable within-series autoregressive (AR) dynamics, and (ii) intermittent cross-dimension interactions that can become spurious over long horizons. We argue that fitting a single model to capture both effects creates an optimization conflict: the high-variance updates needed for cross-dimension modeling can corrupt the gradients that support autoregression, resulting in brittle training and degraded long-horizon accuracy. To address this, we propose ALTTS, a dual-path framework that explicitly decouples autoregression and cross-relation (CR) modeling. In ALTTS, the AR path is instantiated with a linear predictor, while the CR path uses a Transformer equipped with Cross-Relation Self-Attention (CRSA); the two branches are coordinated via alternating optimization to isolate gradient noise and reduce cross-block interference. Extensive experiments on multiple benchmarks show that ALTTS consistently outperforms prior methods, with the most pronounced improvements on long-horizon forecasting. Overall, our results suggest that carefully designed optimization strategies, rather than ever more complex architectures, can be a key driver of progress in multivariate time series forecasting.
Abstract:VLA models have achieved remarkable progress in embodied intelligence; however, their evaluation remains largely confined to simulations or highly constrained real-world settings. This mismatch creates a substantial reality gap, where strong benchmark performance often masks poor generalization in diverse physical environments. We identify three systemic shortcomings in current benchmarking practices that hinder fair and reliable model comparison. (1) Existing benchmarks fail to model real-world dynamics, overlooking critical factors such as dynamic object configurations, robot initial states, lighting changes, and sensor noise. (2) Current protocols neglect spatial--physical intelligence, reducing evaluation to rote manipulation tasks that do not probe geometric reasoning. (3) The field lacks scalable fully autonomous evaluation, instead relying on simplistic 2D metrics that miss 3D spatial structure or on human-in-the-loop systems that are costly, biased, and unscalable. To address these limitations, we introduce RADAR (Real-world Autonomous Dynamics And Reasoning), a benchmark designed to systematically evaluate VLA generalization under realistic conditions. RADAR integrates three core components: (1) a principled suite of physical dynamics; (2) dedicated tasks that explicitly test spatial reasoning and physical understanding; and (3) a fully autonomous evaluation pipeline based on 3D metrics, eliminating the need for human supervision. We apply RADAR to audit multiple state-of-the-art VLA models and uncover severe fragility beneath their apparent competence. Performance drops precipitously under modest physical dynamics, with the expectation of 3D IoU declining from 0.261 to 0.068 under sensor noise. Moreover, models exhibit limited spatial reasoning capability. These findings position RADAR as a necessary bench toward reliable and generalizable real-world evaluation of VLA models.
Abstract:Large-scale multimodal contrastive learning has recently achieved impressive success in learning rich and transferable representations, yet it remains fundamentally limited by the uniform treatment of feature dimensions and the neglect of the intrinsic spectral structure of the learned features. Empirical evidence indicates that high-dimensional embeddings tend to collapse into narrow cones, concentrating task-relevant semantics in a small subspace, while the majority of dimensions remain occupied by noise and spurious correlations. Such spectral imbalance and entanglement undermine model generalization. We propose Spectral Disentanglement and Enhancement (SDE), a novel framework that bridges the gap between the geometry of the embedded spaces and their spectral properties. Our approach leverages singular value decomposition to adaptively partition feature dimensions into strong signals that capture task-critical semantics, weak signals that reflect ancillary correlations, and noise representing irrelevant perturbations. A curriculum-based spectral enhancement strategy is then applied, selectively amplifying informative components with theoretical guarantees on training stability. Building upon the enhanced features, we further introduce a dual-domain contrastive loss that jointly optimizes alignment in both the feature and spectral spaces, effectively integrating spectral regularization into the training process and encouraging richer, more robust representations. Extensive experiments on large-scale multimodal benchmarks demonstrate that SDE consistently improves representation robustness and generalization, outperforming state-of-the-art methods. SDE integrates seamlessly with existing contrastive pipelines, offering an effective solution for multimodal representation learning.
Abstract:The development of artificial intelligence can be viewed as an evolution of data-driven learning paradigms, with successive shifts in data organization and utilization continuously driving advances in model capability. Current LLM research is dominated by a paradigm that relies heavily on unidirectional scaling of data size, increasingly encountering bottlenecks in data availability, acquisition cost, and training efficiency. In this work, we argue that the development of AGI is entering a new phase of data-model co-evolution, in which models actively guide data management while high-quality data, in turn, amplifies model capabilities. To implement this vision, we propose a tiered data management framework, designed to support the full LLM training lifecycle across heterogeneous learning objectives and cost constraints. Specifically, we introduce an L0-L4 tiered data management framework, ranging from raw uncurated resources to organized and verifiable knowledge. Importantly, LLMs are fully used in data management processes, such as quality scoring and content editing, to refine data across tiers. Each tier is characterized by distinct data properties, management strategies, and training roles, enabling data to be strategically allocated across LLM training stages, including pre-training, mid-training, and alignment. The framework balances data quality, acquisition cost, and marginal training benefit, providing a systematic approach to scalable and sustainable data management. We validate the effectiveness of the proposed framework through empirical studies, in which tiered datasets are constructed from raw corpora and used across multiple training phases. Experimental results demonstrate that tier-aware data utilization significantly improves training efficiency and model performance. To facilitate further research, we release our tiered datasets and processing tools to the community.
Abstract:Generating deep research reports requires large-scale information acquisition and the synthesis of insight-driven analysis, posing a significant challenge for current language models. Most existing approaches follow a plan-then-write paradigm, whose performance heavily depends on the quality of the initial outline. However, constructing a comprehensive outline itself demands strong reasoning ability, causing current deep research systems to rely almost exclusively on closed-source or online large models. This reliance raises practical barriers to deployment and introduces safety and privacy concerns for user-authored data. In this work, we present AgentCPM-Report, a lightweight yet high-performing local solution composed of a framework that mirrors the human writing process and an 8B-parameter deep research agent. Our framework uses a Writing As Reasoning Policy (WARP), which enables models to dynamically revise outlines during report generation. Under this policy, the agent alternates between Evidence-Based Drafting and Reasoning-Driven Deepening, jointly supporting information acquisition, knowledge refinement, and iterative outline evolution. To effectively equip small models with this capability, we introduce a Multi-Stage Agentic Training strategy, consisting of cold-start, atomic skill RL, and holistic pipeline RL. Experiments on DeepResearch Bench, DeepConsult, and DeepResearch Gym demonstrate that AgentCPM-Report outperforms leading closed-source systems, with substantial gains in Insight.
Abstract:Chemical large language models (LLMs) predominantly rely on explicit Chain-of-Thought (CoT) in natural language to perform complex reasoning. However, chemical reasoning is inherently continuous and structural, and forcing it into discrete linguistic tokens introduces a fundamental representation mismatch that constrains both efficiency and performance. We introduce LatentChem, a latent reasoning interface that decouples chemical computation from textual generation, enabling models to perform multi-step reasoning directly in continuous latent space while emitting language only for final outputs. Remarkably, we observe a consistent emergent behavior: when optimized solely for task success, models spontaneously internalize reasoning, progressively abandoning verbose textual derivations in favor of implicit latent computation. This shift is not merely stylistic but computationally advantageous. Across diverse chemical reasoning benchmarks, LatentChem achieves a 59.88\% non-tie win rate over strong CoT-based baselines on ChemCoTBench, while delivering a 10.84$\times$ average inference speedup. Our results provide empirical evidence that chemical reasoning is more naturally and effectively realized as continuous latent dynamics rather than discretized linguistic trajectories.
Abstract:While Large Language Model (LLM)-based agents have shown remarkable potential for solving complex tasks, existing systems remain heavily reliant on large-scale models, leaving the capabilities of edge-scale models largely underexplored. In this paper, we present the first systematic study on training agentic models at the 4B-parameter scale. We identify three primary bottlenecks hindering the performance of edge-scale models: catastrophic forgetting during Supervised Fine-Tuning (SFT), sensitivity to reward signal noise during Reinforcement Learning (RL), and reasoning degradation caused by redundant information in long-context scenarios. To address the issues, we propose AgentCPM-Explore, a compact 4B agent model with high knowledge density and strong exploration capability. We introduce a holistic training framework featuring parameter-space model fusion, reward signal denoising, and contextual information refinement. Through deep exploration, AgentCPM-Explore achieves state-of-the-art (SOTA) performance among 4B-class models, matches or surpasses 8B-class SOTA models on four benchmarks, and even outperforms larger-scale models such as Claude-4.5-Sonnet or DeepSeek-v3.2 in five benchmarks. Notably, AgentCPM-Explore achieves 97.09% accuracy on GAIA text-based tasks under pass@64. These results provide compelling evidence that the bottleneck for edge-scale models is not their inherent capability ceiling, but rather their inference stability. Based on our well-established training framework, AgentCPM-Explore effectively unlocks the significant, yet previously underestimated, potential of edge-scale models.