Abstract:Despite recent progress on the short-video Text-Visual Question Answering (ViteVQA) task - largely driven by benchmarks such as M4-ViteVQA - existing datasets still suffer from limited video duration and narrow evaluation scopes, making it difficult to adequately assess the growing capabilities of powerful multimodal large language models (MLLMs). To address these limitations, we introduce TextVidBench, the first benchmark specifically designed for long-video text question answering (>3 minutes). TextVidBench makes three key contributions: 1) Cross-domain long-video coverage: Spanning 9 categories (e.g., news, sports, gaming), with an average video length of 2306 seconds, enabling more realistic evaluation of long-video understanding. 2) A three-stage evaluation framework: "Text Needle-in-Haystack -> Temporal Grounding -> Text Dynamics Captioning". 3) High-quality fine-grained annotations: Containing over 5,000 question-answer pairs with detailed semantic labeling. Furthermore, we propose an efficient paradigm for improving large models through: (i) introducing the IT-Rope mechanism and temporal prompt engineering to enhance temporal perception, (ii) adopting non-uniform positional encoding to better handle long video sequences, and (iii) applying lightweight fine-tuning on video-text data. Extensive experiments on multiple public datasets as well as TextVidBench demonstrate that our new benchmark presents significant challenges to existing models, while our proposed method offers valuable insights into improving long-video scene text understanding capabilities.
Abstract:Benefiting from contrastively trained visual encoders on large-scale natural scene images, Large Multimodal Models (LMMs) have achieved remarkable performance across various visual perception tasks. However, the inherent limitations of contrastive learning upon summarized descriptions fundamentally restrict the capabilities of models in meticulous reasoning, particularly in crucial scenarios of geometric problem-solving. To enhance geometric understanding, we propose a novel hard negative contrastive learning framework for the vision encoder, which combines image-based contrastive learning using generation-based hard negatives created by perturbing diagram generation code, and text-based contrastive learning using rule-based negatives derived from modified geometric descriptions and retrieval-based negatives selected based on caption similarity. We train CLIP using our strong negative learning method, namely MMCLIP (Multimodal Math CLIP), and subsequently train an LMM for geometric problem-solving. Experiments show that our trained model, MMGeoLM, significantly outperforms other open-source models on three geometric reasoning benchmarks. Even with a size of 7B, it can rival powerful closed-source models like GPT-4o. We further study the impact of different negative sample construction methods and the number of negative samples on the geometric reasoning performance of LMM, yielding fruitful conclusions. The code and dataset are available at https://github.com/THU-KEG/MMGeoLM.
Abstract:To forecast traffic with both spatial and temporal dimensions, we unroll a mixed-graph-based optimization algorithm into a lightweight and interpretable transformer-like neural net. Specifically, we construct two graphs: an undirected graph $\mathcal{G}^u$ capturing spatial correlations across geography, and a directed graph $\mathcal{G}^d$ capturing sequential relationships over time. We formulate a prediction problem for the future samples of signal $\mathbf{x}$, assuming it is "smooth" with respect to both $\mathcal{G}^u$ and $\mathcal{G}^d$, where we design new $\ell_2$ and $\ell_1$-norm variational terms to quantify and promote signal smoothness (low-frequency reconstruction) on a directed graph. We construct an iterative algorithm based on alternating direction method of multipliers (ADMM), and unroll it into a feed-forward network for data-driven parameter learning. We insert graph learning modules for $\mathcal{G}^u$ and $\mathcal{G}^d$, which are akin to the self-attention mechanism in classical transformers. Experiments show that our unrolled networks achieve competitive traffic forecast performance as state-of-the-art prediction schemes, while reducing parameter counts drastically. Our code is available in https://github.com/SingularityUndefined/Unrolling-GSP-STForecast.
Abstract:Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present \textbf{Quicksviewer}, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45$\times$ compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves SOTA under modest sequence lengths using just up to 5\% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.
Abstract:Objctives: This work aimed to statistically compare the metabolite quantification of human brain magnetic resonance spectroscopy (MRS) between the deep learning method QNet and the classical method LCModel through an easy-to-use intelligent cloud computing platform CloudBrain-MRS. Materials and Methods: In this retrospective study, two 3 T MRI scanners Philips Ingenia and Achieva collected 61 and 46 in vivo 1H magnetic resonance (MR) spectra of healthy participants, respectively, from the brain region of pregenual anterior cingulate cortex from September to October 2021. The analyses of Bland-Altman, Pearson correlation and reasonability were performed to assess the degree of agreement, linear correlation and reasonability between the two quantification methods. Results: Fifteen healthy volunteers (12 females and 3 males, age range: 21-35 years, mean age/standard deviation = 27.4/3.9 years) were recruited. The analyses of Bland-Altman, Pearson correlation and reasonability showed high to good consistency and very strong to moderate correlation between the two methods for quantification of total N-acetylaspartate (tNAA), total choline (tCho), and inositol (Ins) (relative half interval of limits of agreement = 3.04%, 9.3%, and 18.5%, respectively; Pearson correlation coefficient r = 0.775, 0.927, and 0.469, respectively). In addition, quantification results of QNet are more likely to be closer to the previous reported average values than those of LCModel. Conclusion: There were high or good degrees of consistency between the quantification results of QNet and LCModel for tNAA, tCho, and Ins, and QNet generally has more reasonable quantification than LCModel.
Abstract:Despite the remarkable performance of multimodal large language models (MLLMs) across diverse tasks, the substantial training and inference costs impede their advancement. The majority of computation stems from the overwhelming volume of vision tokens processed by the transformer decoder. In this paper, we propose to build efficient MLLMs by leveraging the Mixture-of-Depths (MoD) mechanism, where each transformer decoder layer selects essential vision tokens to process while skipping redundant ones. However, integrating MoD into MLLMs is non-trivial. To address the challenges of training and inference stability as well as limited training data, we adapt the MoD module with two novel designs: tanh-gated weight normalization (TanhNorm) and symmetric token reweighting (STRing). Moreover, we observe that vision tokens exhibit higher redundancy in deeper layer and thus design a progressive ratio decay (PRD) strategy, which gradually reduces the token retention ratio layer by layer, employing a shifted cosine schedule. This crucial design fully unleashes the potential of MoD, significantly boosting the efficiency and performance of our models. To validate the effectiveness of our approach, we conduct extensive experiments with two baseline models across 14 benchmarks. Our model, p-MoD, matches or even surpasses the performance of the baseline models, with only 55.6% TFLOPs and 53.8% KV cache storage during inference, and 77.7% GPU hours during training.
Abstract:Accurately mapping large-scale cropland is crucial for agricultural production management and planning. Currently, the combination of remote sensing data and deep learning techniques has shown outstanding performance in cropland mapping. However, those approaches require massive precise labels, which are labor-intensive. To reduce the label cost, this study presented a weakly supervised framework considering multi-temporal information for large-scale cropland mapping. Specifically, we extract high-quality labels according to their consistency among global land cover (GLC) products to construct the supervised learning signal. On the one hand, to alleviate the overfitting problem caused by the model's over-trust of remaining errors in high-quality labels, we encode the similarity/aggregation of cropland in the visual/spatial domain to construct the unsupervised learning signal, and take it as the regularization term to constrain the supervised part. On the other hand, to sufficiently leverage the plentiful information in the samples without high-quality labels, we also incorporate the unsupervised learning signal in these samples, enriching the diversity of the feature space. After that, to capture the phenological features of croplands, we introduce dense satellite image time series (SITS) to extend the proposed framework in the temporal dimension. We also visualized the high dimensional phenological features to uncover how multi-temporal information benefits cropland extraction, and assessed the method's robustness under conditions of data scarcity. The proposed framework has been experimentally validated for strong adaptability across three study areas (Hunan Province, Southeast France, and Kansas) in large-scale cropland mapping, and the internal mechanism and temporal generalizability are also investigated.
Abstract:Robust content moderation classifiers are essential for the safety of Generative AI systems. Content moderation, or safety classification, is notoriously ambiguous: differences between safe and unsafe inputs are often extremely subtle, making it difficult for classifiers (and indeed, even humans) to properly distinguish violating vs. benign samples without further context or explanation. Furthermore, as these technologies are deployed across various applications and audiences, scaling risk discovery and mitigation through continuous model fine-tuning becomes increasingly challenging and costly. To address these challenges, we propose a Classification approach employing Retrieval-Augmented Generation (Class-RAG). Class-RAG extends the capability of its base LLM through access to a retrieval library which can be dynamically updated to enable semantic hotfixing for immediate, flexible risk mitigation. Compared to traditional fine-tuned models, Class-RAG demonstrates flexibility and transparency in decision-making. As evidenced by empirical studies, Class-RAG outperforms on classification and is more robust against adversarial attack. Besides, our findings suggest that Class-RAG performance scales with retrieval library size, indicating that increasing the library size is a viable and low-cost approach to improve content moderation.
Abstract:Facial expression recognition (FER) is a critical task in multimedia with significant implications across various domains. However, analyzing the causes of facial expressions is essential for accurately recognizing them. Current approaches, such as those based on facial action units (AUs), typically provide AU names and intensities but lack insight into the interactions and relationships between AUs and the overall expression. In this paper, we propose a novel method called ExpLLM, which leverages large language models to generate an accurate chain of thought (CoT) for facial expression recognition. Specifically, we have designed the CoT mechanism from three key perspectives: key observations, overall emotional interpretation, and conclusion. The key observations describe the AU's name, intensity, and associated emotions. The overall emotional interpretation provides an analysis based on multiple AUs and their interactions, identifying the dominant emotions and their relationships. Finally, the conclusion presents the final expression label derived from the preceding analysis. Furthermore, we also introduce the Exp-CoT Engine, designed to construct this expression CoT and generate instruction-description data for training our ExpLLM. Extensive experiments on the RAF-DB and AffectNet datasets demonstrate that ExpLLM outperforms current state-of-the-art FER methods. ExpLLM also surpasses the latest GPT-4o in expression CoT generation, particularly in recognizing micro-expressions where GPT-4o frequently fails.
Abstract:Beginning with VisualGLM and CogVLM, we are continuously exploring VLMs in pursuit of enhanced vision-language fusion, efficient higher-resolution architecture, and broader modalities and applications. Here we propose the CogVLM2 family, a new generation of visual language models for image and video understanding including CogVLM2, CogVLM2-Video and GLM-4V. As an image understanding model, CogVLM2 inherits the visual expert architecture with improved training recipes in both pre-training and post-training stages, supporting input resolution up to $1344 \times 1344$ pixels. As a video understanding model, CogVLM2-Video integrates multi-frame input with timestamps and proposes automated temporal grounding data construction. Notably, CogVLM2 family has achieved state-of-the-art results on benchmarks like MMBench, MM-Vet, TextVQA, MVBench and VCGBench. All models are open-sourced in https://github.com/THUDM/CogVLM2 and https://github.com/THUDM/GLM-4, contributing to the advancement of the field.