Alert button
Picture for Liang Wang

Liang Wang

Alert button

Model-free Test Time Adaptation for Out-Of-Distribution Detection

Nov 28, 2023
YiFan Zhang, Xue Wang, Tian Zhou, Kun Yuan, Zhang Zhang, Liang Wang, Rong Jin, Tieniu Tan

Out-of-distribution (OOD) detection is essential for the reliability of ML models. Most existing methods for OOD detection learn a fixed decision criterion from a given in-distribution dataset and apply it universally to decide if a data point is OOD. Recent work~\cite{fang2022is} shows that given only in-distribution data, it is impossible to reliably detect OOD data without extra assumptions. Motivated by the theoretical result and recent exploration of test-time adaptation methods, we propose a Non-Parametric Test Time \textbf{Ada}ptation framework for \textbf{O}ut-Of-\textbf{D}istribution \textbf{D}etection (\abbr). Unlike conventional methods, \abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions. The framework incorporates detected OOD instances into decision-making, reducing false positive rates, particularly when ID and OOD distributions overlap significantly. We demonstrate the effectiveness of \abbr through comprehensive experiments on multiple OOD detection benchmarks, extensive empirical studies show that \abbr significantly improves the performance of OOD detection over state-of-the-art methods. Specifically, \abbr reduces the false positive rate (FPR95) by $23.23\%$ on the CIFAR-10 benchmarks and $38\%$ on the ImageNet-1k benchmarks compared to the advanced methods. Lastly, we theoretically verify the effectiveness of \abbr.

* 12 pages, 10 figures 
Viaarxiv icon

Learning Decentralized Traffic Signal Controllers with Multi-Agent Graph Reinforcement Learning

Nov 07, 2023
Yao Zhang, Zhiwen Yu, Jun Zhang, Liang Wang, Tom H. Luan, Bin Guo, Chau Yuen

This paper considers optimal traffic signal control in smart cities, which has been taken as a complex networked system control problem. Given the interacting dynamics among traffic lights and road networks, attaining controller adaptivity and scalability stands out as a primary challenge. Capturing the spatial-temporal correlation among traffic lights under the framework of Multi-Agent Reinforcement Learning (MARL) is a promising solution. Nevertheless, existing MARL algorithms ignore effective information aggregation which is fundamental for improving the learning capacity of decentralized agents. In this paper, we design a new decentralized control architecture with improved environmental observability to capture the spatial-temporal correlation. Specifically, we first develop a topology-aware information aggregation strategy to extract correlation-related information from unstructured data gathered in the road network. Particularly, we transfer the road network topology into a graph shift operator by forming a diffusion process on the topology, which subsequently facilitates the construction of graph signals. A diffusion convolution module is developed, forming a new MARL algorithm, which endows agents with the capabilities of graph learning. Extensive experiments based on both synthetic and real-world datasets verify that our proposal outperforms existing decentralized algorithms.

Viaarxiv icon

Time Series Synthesis Using the Matrix Profile for Anonymization

Nov 05, 2023
Audrey Der, Chin-Chia Michael Yeh, Yan Zheng, Junpeng Wang, Huiyuan Chen, Zhongfang Zhuang, Liang Wang, Wei Zhang, Eamonn Keogh

Publishing and sharing data is crucial for the data mining community, allowing collaboration and driving open innovation. However, many researchers cannot release their data due to privacy regulations or fear of leaking confidential business information. To alleviate such issues, we propose the Time Series Synthesis Using the Matrix Profile (TSSUMP) method, where synthesized time series can be released in lieu of the original data. The TSSUMP method synthesizes time series by preserving similarity join information (i.e., Matrix Profile) while reducing the correlation between the synthesized and the original time series. As a result, neither the values for the individual time steps nor the local patterns (or shapes) from the original data can be recovered, yet the resulting data can be used for downstream tasks that data analysts are interested in. We concentrate on similarity joins because they are one of the most widely applied time series data mining routines across different data mining tasks. We test our method on a case study of ECG and gender masking prediction. In this case study, the gender information is not only removed from the synthesized time series, but the synthesized time series also preserves enough information from the original time series. As a result, unmodified data mining tools can obtain near-identical performance on the synthesized time series as on the original time series.

Viaarxiv icon

Ego-Network Transformer for Subsequence Classification in Time Series Data

Nov 05, 2023
Chin-Chia Michael Yeh, Huiyuan Chen, Yujie Fan, Xin Dai, Yan Zheng, Vivian Lai, Junpeng Wang, Zhongfang Zhuang, Liang Wang, Wei Zhang, Eamonn Keogh

Time series classification is a widely studied problem in the field of time series data mining. Previous research has predominantly focused on scenarios where relevant or foreground subsequences have already been extracted, with each subsequence corresponding to a single label. However, real-world time series data often contain foreground subsequences that are intertwined with background subsequences. Successfully classifying these relevant subsequences requires not only distinguishing between different classes but also accurately identifying the foreground subsequences amidst the background. To address this challenge, we propose a novel subsequence classification method that represents each subsequence as an ego-network, providing crucial nearest neighbor information to the model. The ego-networks of all subsequences collectively form a time series subsequence graph, and we introduce an algorithm to efficiently construct this graph. Furthermore, we have demonstrated the significance of enforcing temporal consistency in the prediction of adjacent subsequences for the subsequence classification problem. To evaluate the effectiveness of our approach, we conducted experiments using 128 univariate and 30 multivariate time series datasets. The experimental results demonstrate the superior performance of our method compared to alternative approaches. Specifically, our method outperforms the baseline on 104 out of 158 datasets.

Viaarxiv icon

Sketching Multidimensional Time Series for Fast Discord Mining

Nov 05, 2023
Chin-Chia Michael Yeh, Yan Zheng, Menghai Pan, Huiyuan Chen, Zhongfang Zhuang, Junpeng Wang, Liang Wang, Wei Zhang, Jeff M. Phillips, Eamonn Keogh

Time series discords are a useful primitive for time series anomaly detection, and the matrix profile is capable of capturing discord effectively. There exist many research efforts to improve the scalability of discord discovery with respect to the length of time series. However, there is surprisingly little work focused on reducing the time complexity of matrix profile computation associated with dimensionality of a multidimensional time series. In this work, we propose a sketch for discord mining among multi-dimensional time series. After an initial pre-processing of the sketch as fast as reading the data, the discord mining has runtime independent of the dimensionality of the original data. On several real world examples from water treatment and transportation, the proposed algorithm improves the throughput by at least an order of magnitude (50X) and only has minimal impact on the quality of the approximated solution. Additionally, the proposed method can handle the dynamic addition or deletion of dimensions inconsequential overhead. This allows a data analyst to consider "what-if" scenarios in real time while exploring the data.

Viaarxiv icon

Temporal Treasure Hunt: Content-based Time Series Retrieval System for Discovering Insights

Nov 05, 2023
Chin-Chia Michael Yeh, Huiyuan Chen, Xin Dai, Yan Zheng, Yujie Fan, Vivian Lai, Junpeng Wang, Audrey Der, Zhongfang Zhuang, Liang Wang, Wei Zhang

Time series data is ubiquitous across various domains such as finance, healthcare, and manufacturing, but their properties can vary significantly depending on the domain they originate from. The ability to perform Content-based Time Series Retrieval (CTSR) is crucial for identifying unknown time series examples. However, existing CTSR works typically focus on retrieving time series from a single domain database, which can be inadequate if the user does not know the source of the query time series. This limitation motivates us to investigate the CTSR problem in a scenario where the database contains time series from multiple domains. To facilitate this investigation, we introduce a CTSR benchmark dataset that comprises time series data from a variety of domains, such as motion, power demand, and traffic. This dataset is sourced from a publicly available time series classification dataset archive, making it easily accessible to researchers in the field. We compare several popular methods for modeling and retrieving time series data using this benchmark dataset. Additionally, we propose a novel distance learning model that outperforms the existing methods. Overall, our study highlights the importance of addressing the CTSR problem across multiple domains and provides a useful benchmark dataset for future research.

Viaarxiv icon

Combating Bilateral Edge Noise for Robust Link Prediction

Nov 02, 2023
Zhanke Zhou, Jiangchao Yao, Jiaxu Liu, Xiawei Guo, Quanming Yao, Li He, Liang Wang, Bo Zheng, Bo Han

Although link prediction on graphs has achieved great success with the development of graph neural networks (GNNs), the potential robustness under the edge noise is still less investigated. To close this gap, we first conduct an empirical study to disclose that the edge noise bilaterally perturbs both input topology and target label, yielding severe performance degradation and representation collapse. To address this dilemma, we propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse. Different from the basic information bottleneck, RGIB further decouples and balances the mutual dependence among graph topology, target labels, and representation, building new learning objectives for robust representation against the bilateral noise. Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies, i.e., self-supervised learning and data reparameterization, for implicit and explicit data denoising, respectively. Extensive experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations. The code is publicly available at: https://github.com/tmlr-group/RGIB.

* Accepted by NeurIPS 2023 
Viaarxiv icon

Visual Analytics for Efficient Image Exploration and User-Guided Image Captioning

Nov 02, 2023
Yiran Li, Junpeng Wang, Prince Aboagye, Michael Yeh, Yan Zheng, Liang Wang, Wei Zhang, Kwan-Liu Ma

Recent advancements in pre-trained large-scale language-image models have ushered in a new era of visual comprehension, offering a significant leap forward. These breakthroughs have proven particularly instrumental in addressing long-standing challenges that were previously daunting. Leveraging these innovative techniques, this paper tackles two well-known issues within the realm of visual analytics: (1) the efficient exploration of large-scale image datasets and identification of potential data biases within them; (2) the evaluation of image captions and steering of their generation process. On the one hand, by visually examining the captions automatically generated from language-image models for an image dataset, we gain deeper insights into the semantic underpinnings of the visual contents, unearthing data biases that may be entrenched within the dataset. On the other hand, by depicting the association between visual contents and textual captions, we expose the weaknesses of pre-trained language-image models in their captioning capability and propose an interactive interface to steer caption generation. The two parts have been coalesced into a coordinated visual analytics system, fostering mutual enrichment of visual and textual elements. We validate the effectiveness of the system with domain practitioners through concrete case studies with large-scale image datasets.

Viaarxiv icon

Large Search Model: Redefining Search Stack in the Era of LLMs

Oct 23, 2023
Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei

Modern search engines are built on a stack of different components, including query understanding, retrieval, multi-stage ranking, and question answering, among others. These components are often optimized and deployed independently. In this paper, we introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM). All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts. This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack. To substantiate the feasibility of this framework, we present a series of proof-of-concept experiments and discuss the potential challenges associated with implementing this approach within real-world search systems.

* 16 pages 
Viaarxiv icon

FATA-Trans: Field And Time-Aware Transformer for Sequential Tabular Data

Oct 20, 2023
Dongyu Zhang, Liang Wang, Xin Dai, Shubham Jain, Junpeng Wang, Yujie Fan, Chin-Chia Michael Yeh, Yan Zheng, Zhongfang Zhuang, Wei Zhang

Sequential tabular data is one of the most commonly used data types in real-world applications. Different from conventional tabular data, where rows in a table are independent, sequential tabular data contains rich contextual and sequential information, where some fields are dynamically changing over time and others are static. Existing transformer-based approaches analyzing sequential tabular data overlook the differences between dynamic and static fields by replicating and filling static fields into each transformer, and ignore temporal information between rows, which leads to three major disadvantages: (1) computational overhead, (2) artificially simplified data for masked language modeling pre-training task that may yield less meaningful representations, and (3) disregarding the temporal behavioral patterns implied by time intervals. In this work, we propose FATA-Trans, a model with two field transformers for modeling sequential tabular data, where each processes static and dynamic field information separately. FATA-Trans is field- and time-aware for sequential tabular data. The field-type embedding in the method enables FATA-Trans to capture differences between static and dynamic fields. The time-aware position embedding exploits both order and time interval information between rows, which helps the model detect underlying temporal behavior in a sequence. Our experiments on three benchmark datasets demonstrate that the learned representations from FATA-Trans consistently outperform state-of-the-art solutions in the downstream tasks. We also present visualization studies to highlight the insights captured by the learned representations, enhancing our understanding of the underlying data. Our codes are available at https://github.com/zdy93/FATA-Trans.

* This work is accepted by ACM International Conference on Information and Knowledge Management (CIKM) 2023 
Viaarxiv icon