Abstract:Direction of Arrival (DOA) estimation serves as a critical sensing technology poised to play a vital role in future intelligent and ubiquitous communication systems. Despite the development of numerous mature super-resolution algorithms, the inherent end-fire effect problem in fixed antenna arrays remains inadequately addressed. This work proposed a novel array architecture composed of fluid antennas. By exploiting the spatial reconfigurability of their positions to equivalently modulate the array steering vector and integrating it with the classical MUSIC algorithm, this approach achieved high-precision DOA estimation. Simulation results demonstrated that the proposed method delivers outstanding estimation performance even in highly challenging end-fire regions.
Abstract:Multimodal Large Language Models (MLLMs) have empowered embodied agents with remarkable capabilities in planning and reasoning. However, when facing ambiguous natural language instructions (e.g., "fetch the tool" in a cluttered room), current agents often fail to balance the high cost of physical exploration against the cognitive cost of human interaction. They typically treat disambiguation as a passive perception problem, lacking the strategic reasoning to minimize total task execution costs. To bridge this gap, we propose ESearch-R1, a cost-aware embodied reasoning framework that unifies interactive dialogue (Ask), episodic memory retrieval (GetMemory), and physical navigation (Navigate) into a single decision process. We introduce HC-GRPO (Heterogeneous Cost-Aware Group Relative Policy Optimization). Unlike traditional PPO which relies on a separate value critic, HC-GRPO optimizes the MLLM by sampling groups of reasoning trajectories and reinforcing those that achieve the optimal trade-off between information gain and heterogeneous costs (e.g., navigate time, and human attention). Extensive experiments in AI2-THOR demonstrate that ESearch-R1 significantly outperforms standard ReAct-based agents. It improves task success rates while reducing total operational costs by approximately 50\%, validating the effectiveness of GRPO in aligning MLLM agents with physical world constraints.
Abstract:The structure of topology underpins much of the research on performance and robustness, yet available topology data are typically scarce, necessitating the generation of synthetic graphs with desired properties for testing or release. Prior diffusion-based approaches either embed conditions into the diffusion model, requiring retraining for each attribute and hindering real-time applicability, or use classifier-based guidance post-training, which does not account for topology scale and practical constraints. In this paper, we show from a discrete perspective that gradients from a pre-trained graph-level classifier can be incorporated into the discrete reverse diffusion posterior to steer generation toward specified structural properties. Based on this insight, we propose Classifier-guided Conditional Topology Generation with Persistent Homology (CoPHo), which builds a persistent homology filtration over intermediate graphs and interprets features as guidance signals that steer generation toward the desired properties at each denoising step. Experiments on four generic/network datasets demonstrate that CoPHo outperforms existing methods at matching target metrics, and we further validate its transferability on the QM9 molecular dataset.
Abstract:While thinking-aware generation aims to improve performance on complex tasks, we identify a critical failure mode where existing sequential, autoregressive approaches can paradoxically degrade performance due to error propagation. To systematically analyze this issue, we propose ParaBench, a new benchmark designed to evaluate both text and image output modalities. Our analysis using ParaBench reveals that this performance degradation is strongly correlated with poor alignment between the generated reasoning and the final image. To resolve this, we propose a parallel multimodal diffusion framework, MMaDA-Parallel, that enables continuous, bidirectional interaction between text and images throughout the entire denoising trajectory. MMaDA-Parallel is trained with supervised finetuning and then further optimized by Parallel Reinforcement Learning (ParaRL), a novel strategy that applies semantic rewards along the trajectory to enforce cross-modal consistency. Experiments validate that our model significantly improves cross-modal alignment and semantic consistency, achieving a 6.9\% improvement in Output Alignment on ParaBench compared to the state-of-the-art model, Bagel, establishing a more robust paradigm for thinking-aware image synthesis. Our code is open-sourced at https://github.com/tyfeld/MMaDA-Parallel
Abstract:While Multimodal Large Language Models (MLLMs) excel at holistic understanding, they struggle in capturing the dense world with complex scenes, requiring fine-grained analysis of intricate details and object inter-relationships. Region-level MLLMs have been a promising step. However, previous attempts are generally optimized to understand given regions in isolation, neglecting crucial global contexts. To address this, we introduce Grasp Any Region (GAR) for comprehen- sive region-level visual understanding. Empowered by an effective RoI-aligned feature replay technique, GAR supports (1) precise perception by leveraging necessary global contexts, and (2) modeling interactions between multiple prompts. Together, it then naturally achieves (3) advanced compositional reasoning to answer specific free-form questions about any region, shifting the paradigm from passive description to active dialogue. Moreover, we construct GAR-Bench, which not only provides a more accurate evaluation of single-region comprehension, but also, more importantly, measures interactions and complex reasoning across multiple regions. Extensive experiments have demonstrated that GAR-1B not only maintains the state-of-the-art captioning capabilities, e.g., outperforming DAM-3B +4.5 on DLC-Bench, but also excels at modeling relationships between multiple prompts with advanced comprehension capabilities, even surpassing InternVL3-78B on GAR-Bench-VQA. More importantly, our zero-shot GAR-8B even outperforms in-domain VideoRefer-7B on VideoRefer-BenchQ, indicating its strong capabilities can be easily transferred to videos.
Abstract:We propose TraceRL, a trajectory-aware reinforcement learning framework for diffusion language models (DLMs) that incorporates preferred inference trajectory into post-training, and is applicable across different architectures. Equipped with a diffusion-based value model that enhances training stability, we demonstrate improved reasoning performance on complex math and coding tasks. Besides, it can also be applied to adapt block-specific models to larger blocks, which improves sampling flexibility. Employing TraceRL, we derive a series of state-of-the-art diffusion language models, namely TraDo. Although smaller than 7B-scale AR models, TraDo-4B-Instruct still consistently outperforms them across complex math reasoning tasks. TraDo-8B-Instruct achieves relative accuracy improvements of 6.1% over Qwen2.5-7B-Instruct and 51.3% over Llama3.1-8B-Instruct on mathematical reasoning benchmarks. Through curriculum learning, we also derive the first long-CoT DLM, outperforming Qwen2.5-7B-Instruct on MATH500 with an 18.1% relative accuracy gain. To facilitate reproducible research and practical applications, we release a comprehensive open-source framework for building, training, and deploying diffusion LLMs across diverse architectures. The framework integrates accelerated KV-cache techniques and inference engines for both inference and reinforcement learning, and includes implementations of various supervised fine-tuning and RL methods for mathematics, coding, and general tasks. Code and Models: https://github.com/Gen-Verse/dLLM-RL
Abstract:Current Ethereum fraud detection methods rely on context-independent, numerical transaction sequences, failing to capture semantic of account transactions. Furthermore, the pervasive homogeneity in Ethereum transaction records renders it challenging to learn discriminative account embeddings. Moreover, current self-supervised graph learning methods primarily learn node representations through graph reconstruction, resulting in suboptimal performance for node-level tasks like fraud account detection, while these methods also encounter scalability challenges. To tackle these challenges, we propose LMAE4Eth, a multi-view learning framework that fuses transaction semantics, masked graph embedding, and expert knowledge. We first propose a transaction-token contrastive language model (TxCLM) that transforms context-independent numerical transaction records into logically cohesive linguistic representations. To clearly characterize the semantic differences between accounts, we also use a token-aware contrastive learning pre-training objective together with the masked transaction model pre-training objective, learns high-expressive account representations. We then propose a masked account graph autoencoder (MAGAE) using generative self-supervised learning, which achieves superior node-level account detection by focusing on reconstructing account node features. To enable MAGAE to scale for large-scale training, we propose to integrate layer-neighbor sampling into the graph, which reduces the number of sampled vertices by several times without compromising training quality. Finally, using a cross-attention fusion network, we unify the embeddings of TxCLM and MAGAE to leverage the benefits of both. We evaluate our method against 21 baseline approaches on three datasets. Experimental results show that our method outperforms the best baseline by over 10% in F1-score on two of the datasets.
Abstract:With the rapid expansion of web-based applications and cloud services, malicious JavaScript code continues to pose significant threats to user privacy, system integrity, and enterprise security. But, detecting such threats remains challenging due to sophisticated code obfuscation techniques and JavaScript's inherent language characteristics, particularly its nested closure structures and syntactic flexibility. In this work, we propose DeCoda, a hybrid defense framework that combines large language model (LLM)-based deobfuscation with code graph learning: (1) We first construct a sophisticated prompt-learning pipeline with multi-stage refinement, where the LLM progressively reconstructs the original code structure from obfuscated inputs and then generates normalized Abstract Syntax Tree (AST) representations; (2) In JavaScript ASTs, dynamic typing scatters semantically similar nodes while deeply nested functions fracture scope capturing, introducing structural noise and semantic ambiguity. To address these challenges, we then propose to learn hierarchical code graph representations via a Cluster-wise Graph that synergistically integrates graph transformer network, node clustering, and node-to-cluster attention to simultaneously capture both local node-level semantics and global cluster-induced structural relationships from AST graph. Experimental results demonstrate that our method achieves F1-scores of 94.64% and 97.71% on two benchmark datasets, demonstrating absolute improvements of 10.74% and 13.85% over state-of-the-art baselines. In false-positive control evaluation at fixed FPR levels (0.0001, 0.001, 0.01), our approach delivers 4.82, 5.91, and 2.53 higher TPR respectively compared to the best-performing baseline. These results highlight the effectiveness of LLM-based deobfuscation and underscore the importance of modeling cluster-level relationships in detecting malicious code.
Abstract:In response to Distributed Denial of Service (DDoS) attacks, recent research efforts increasingly rely on Machine Learning (ML)-based solutions, whose effectiveness largely depends on the quality of labeled training datasets. To address the scarcity of such datasets, data augmentation with synthetic traces is often employed. However, current synthetic trace generation methods struggle to capture the complex temporal patterns and spatial distributions exhibited in emerging DDoS attacks. This results in insufficient resemblance to real traces and unsatisfied detection accuracy when applied to ML tasks. In this paper, we propose Dual-Stream Temporal-Field Diffusion (DSTF-Diffusion), a multi-view, multi-stream network traffic generative model based on diffusion models, featuring two main streams: The field stream utilizes spatial mapping to bridge network data characteristics with pre-trained realms of stable diffusion models, effectively translating complex network interactions into formats that stable diffusion can process, while the spatial stream adopts a dynamic temporal modeling approach, meticulously capturing the intrinsic temporal patterns of network traffic. Extensive experiments demonstrate that data generated by our model exhibits higher statistical similarity to originals compared to current state-of-the-art solutions, and enhance performances on a wide range of downstream tasks.
Abstract:URL+HTML feature fusion shows promise for robust malicious URL detection, since attacker artifacts persist in DOM structures. However, prior work suffers from four critical shortcomings: (1) incomplete URL modeling, failing to jointly capture lexical patterns and semantic context; (2) HTML graph sparsity, where threat-indicative nodes (e.g., obfuscated scripts) are isolated amid benign content, causing signal dilution during graph aggregation; (3) unidirectional analysis, ignoring URL-HTML feature bidirectional interaction; and (4) opaque decisions, lacking attribution to malicious DOM components. To address these challenges, we present WebGuard++, a detection framework with 4 novel components: 1) Cross-scale URL Encoder: Hierarchically learns local-to-global and coarse to fine URL features based on Transformer network with dynamic convolution. 2) Subgraph-aware HTML Encoder: Decomposes DOM graphs into interpretable substructures, amplifying sparse threat signals via Hierarchical feature fusion. 3) Bidirectional Coupling Module: Aligns URL and HTML embeddings through cross-modal contrastive learning, optimizing inter-modal consistency and intra-modal specificity. 4) Voting Module: Localizes malicious regions through consensus voting on malicious subgraph predictions. Experiments show WebGuard++ achieves significant improvements over state-of-the-art baselines, achieving 1.1x-7.9x higher TPR at fixed FPR of 0.001 and 0.0001 across both datasets.