Abstract:Multimodal Large Language Models (MLLMs) have become increasingly important due to their state-of-the-art performance and ability to integrate multiple data modalities, such as text, images, and audio, to perform complex tasks with high accuracy. This paper presents a comprehensive survey on personalized multimodal large language models, focusing on their architecture, training methods, and applications. We propose an intuitive taxonomy for categorizing the techniques used to personalize MLLMs to individual users, and discuss the techniques accordingly. Furthermore, we discuss how such techniques can be combined or adapted when appropriate, highlighting their advantages and underlying rationale. We also provide a succinct summary of personalization tasks investigated in existing research, along with the evaluation metrics commonly used. Additionally, we summarize the datasets that are useful for benchmarking personalized MLLMs. Finally, we outline critical open challenges. This survey aims to serve as a valuable resource for researchers and practitioners seeking to understand and advance the development of personalized multimodal large language models.
Abstract:Offline evaluation of LLMs is crucial in understanding their capacities, though current methods remain underexplored in existing research. In this work, we focus on the offline evaluation of the chain-of-thought capabilities and show how to optimize LLMs based on the proposed evaluation method. To enable offline feedback with rich knowledge and reasoning paths, we use knowledge graphs (e.g., Wikidata5m) to provide feedback on the generated chain of thoughts. Due to the heterogeneity between LLM reasoning and KG structures, direct interaction and feedback from KGs on LLM behavior are challenging, as they require accurate entity linking and grounding of LLM-generated chains of thought in the KG. To address the above challenge, we propose an offline chain-of-thought evaluation framework, OCEAN, which models chain-of-thought reasoning in LLMs as an MDP and evaluate the policy's alignment with KG preference modeling. To overcome the reasoning heterogeneity and grounding problems, we leverage on-policy KG exploration and RL to model a KG policy that generates token-level likelihood distributions for LLM-generated chain-of-thought reasoning paths, simulating KG reasoning preference. Then we incorporate the knowledge-graph feedback on the validity and alignment of the generated reasoning paths into inverse propensity scores and propose KG-IPS estimator. Theoretically, we prove the unbiasedness of the proposed KG-IPS estimator and provide a lower bound on its variance. With the off-policy evaluated value function, we can directly enable off-policy optimization to further enhance chain-of-thought alignment. Our empirical study shows that OCEAN can be efficiently optimized for generating chain-of-thought reasoning paths with higher estimated values without affecting LLMs' general abilities in downstream tasks or their internal knowledge.
Abstract:Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models.
Abstract:Large language models (LLMs) have been used to generate query expansions augmenting original queries for improving information search. Recent studies also explore providing LLMs with initial retrieval results to generate query expansions more grounded to document corpus. However, these methods mostly focus on enhancing textual similarities between search queries and target documents, overlooking document relations. For queries like "Find me a highly rated camera for wildlife photography compatible with my Nikon F-Mount lenses", existing methods may generate expansions that are semantically similar but structurally unrelated to user intents. To handle such semi-structured queries with both textual and relational requirements, in this paper we propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG). To further address the limitation of entity-based scoring in existing KG-based methods, we leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR). Extensive experiments on three datasets of diverse domains show the advantages of our method compared against state-of-the-art baselines on textual and relational semi-structured retrieval.
Abstract:Neural networks are powerful function approximators, yet their ``black-box" nature often renders them opaque and difficult to interpret. While many post-hoc explanation methods exist, they typically fail to capture the underlying reasoning processes of the networks. A truly interpretable neural network would be trained similarly to conventional models using techniques such as backpropagation, but additionally provide insights into the learned input-output relationships. In this work, we introduce the concept of interpretability pipelineing, to incorporate multiple interpretability techniques to outperform each individual technique. To this end, we first evaluate several architectures that promise such interpretability, with a particular focus on two recent models selected for their potential to incorporate interpretability into standard neural network architectures while still leveraging backpropagation: the Growing Interpretable Neural Network (GINN) and Kolmogorov Arnold Networks (KAN). We analyze the limitations and strengths of each and introduce a novel interpretable neural network GINN-KAN that synthesizes the advantages of both models. When tested on the Feynman symbolic regression benchmark datasets, GINN-KAN outperforms both GINN and KAN. To highlight the capabilities and the generalizability of this approach, we position GINN-KAN as an alternative to conventional black-box networks in Physics-Informed Neural Networks (PINNs). We expect this to have far-reaching implications in the application of deep learning pipelines in the natural sciences. Our experiments with this interpretable PINN on 15 different partial differential equations demonstrate that GINN-KAN augmented PINNs outperform PINNs with black-box networks in solving differential equations and surpass the capabilities of both GINN and KAN.
Abstract:A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges. In this study, we address this issue using a modern data-driven approach, developing ByteFF, an Amber-compatible force field for drug-like molecules. To create ByteFF, we generated an expansive and highly diverse molecular dataset at the B3LYP-D3(BJ)/DZVP level of theory. This dataset includes 2.4 million optimized molecular fragment geometries with analytical Hessian matrices, along with 3.2 million torsion profiles. We then trained an edge-augmented, symmetry-preserving molecular graph neural network (GNN) on this dataset, employing a carefully optimized training strategy. Our model predicts all bonded and non-bonded MM force field parameters for drug-like molecules simultaneously across a broad chemical space. ByteFF demonstrates state-of-the-art performance on various benchmark datasets, excelling in predicting relaxed geometries, torsional energy profiles, and conformational energies and forces. Its exceptional accuracy and expansive chemical space coverage make ByteFF a valuable tool for multiple stages of computational drug discovery.
Abstract:The rise of social media and the exponential growth of multimodal communication necessitates advanced techniques for Multimodal Information Extraction (MIE). However, existing methodologies primarily rely on direct Image-Text interactions, a paradigm that often faces significant challenges due to semantic and modality gaps between images and text. In this paper, we introduce a new paradigm of Image-Context-Text interaction, where large multimodal models (LMMs) are utilized to generate descriptive textual context to bridge these gaps. In line with this paradigm, we propose a novel Shapley Value-based Contrastive Alignment (Shap-CA) method, which aligns both context-text and context-image pairs. Shap-CA initially applies the Shapley value concept from cooperative game theory to assess the individual contribution of each element in the set of contexts, texts and images towards total semantic and modality overlaps. Following this quantitative evaluation, a contrastive learning strategy is employed to enhance the interactive contribution within context-text/image pairs, while minimizing the influence across these pairs. Furthermore, we design an adaptive fusion module for selective cross-modal fusion. Extensive experiments across four MIE datasets demonstrate that our method significantly outperforms existing state-of-the-art methods.
Abstract:Reinforcement Learning (RL) has enabled social robots to generate trajectories without human-designed rules or interventions, which makes it more effective than hard-coded systems for generalizing to complex real-world scenarios. However, social navigation is a safety-critical task that requires robots to avoid collisions with pedestrians while previous RL-based solutions fall short in safety performance in complex environments. To enhance the safety of RL policies, to the best of our knowledge, we propose the first algorithm, SoNIC, that integrates adaptive conformal inference (ACI) with constrained reinforcement learning (CRL) to learn safe policies for social navigation. More specifically, our method augments RL observations with ACI-generated nonconformity scores and provides explicit guidance for agents to leverage the uncertainty metrics to avoid safety-critical areas by incorporating safety constraints with spatial relaxation. Our method outperforms state-of-the-art baselines in terms of both safety and adherence to social norms by a large margin and demonstrates much stronger robustness to out-of-distribution scenarios. Our code and video demos are available on our project website: https://sonic-social-nav.github.io/.
Abstract:The evaluation of synthetic data generation is crucial, especially in the retail sector where data accuracy is paramount. This paper introduces a comprehensive framework for assessing synthetic retail data, focusing on fidelity, utility, and privacy. Our approach differentiates between continuous and discrete data attributes, providing precise evaluation criteria. Fidelity is measured through stability and generalizability. Stability ensures synthetic data accurately replicates known data distributions, while generalizability confirms its robustness in novel scenarios. Utility is demonstrated through the synthetic data's effectiveness in critical retail tasks such as demand forecasting and dynamic pricing, proving its value in predictive analytics and strategic planning. Privacy is safeguarded using Differential Privacy, ensuring synthetic data maintains a perfect balance between resembling training and holdout datasets without compromising security. Our findings validate that this framework provides reliable and scalable evaluation for synthetic retail data. It ensures high fidelity, utility, and privacy, making it an essential tool for advancing retail data science. This framework meets the evolving needs of the retail industry with precision and confidence, paving the way for future advancements in synthetic data methodologies.
Abstract:The development of open benchmarking platforms could greatly accelerate the adoption of AI agents in retail. This paper presents comprehensive simulations of customer shopping behaviors for the purpose of benchmarking reinforcement learning (RL) agents that optimize coupon targeting. The difficulty of this learning problem is largely driven by the sparsity of customer purchase events. We trained agents using offline batch data comprising summarized customer purchase histories to help mitigate this effect. Our experiments revealed that contextual bandit and deep RL methods that are less prone to over-fitting the sparse reward distributions significantly outperform static policies. This study offers a practical framework for simulating AI agents that optimize the entire retail customer journey. It aims to inspire the further development of simulation tools for retail AI systems.