Abstract:To elicit capabilities for addressing complex and implicit visual requirements, recent unified multimodal models increasingly adopt chain-of-thought reasoning to guide image generation. However, the actual effect of reasoning on visual synthesis remains unclear. We present UReason, a diagnostic benchmark for reasoning-driven image generation that evaluates whether reasoning can be faithfully executed in pixels. UReason contains 2,000 instances across five task families: Code, Arithmetic, Spatial, Attribute, and Text reasoning. To isolate the role of reasoning traces, we introduce an evaluation framework comparing direct generation, reasoning-guided generation, and de-contextualized generation which conditions only on the refined prompt. Across eight open-source unified models, we observe a consistent Reasoning Paradox: Reasoning traces generally improve performance over direct generation, yet retaining intermediate thoughts as conditioning context often hinders visual synthesis, and conditioning only on the refined prompt yields substantial gains. Our analysis suggests that the bottleneck lies in contextual interference rather than insufficient reasoning capacity. UReason provides a principled testbed for studying reasoning in unified models and motivates future methods that effectively integrate reasoning for visual generation while mitigating interference.
Abstract:Multimodal retrieval models are becoming increasingly important in scenarios such as food delivery, where rich multimodal features can meet diverse user needs and enable precise retrieval. Mainstream approaches typically employ a dual-tower architecture between queries and items, and perform joint optimization of intra-tower and inter-tower tasks. However, we observe that joint optimization often leads to certain modalities dominating the training process, while other modalities are neglected. In addition, inconsistent training speeds across modalities can easily result in the one-epoch problem. To address these challenges, we propose a staged pretraining strategy, which guides the model to focus on specialized tasks at each stage, enabling it to effectively attend to and utilize multimodal features, and allowing flexible control over the training process at each stage to avoid the one-epoch problem. Furthermore, to better utilize the semantic IDs that compress high-dimensional multimodal embeddings, we design both generative and discriminative tasks to help the model understand the associations between SIDs, queries, and item features, thereby improving overall performance. Extensive experiments on large-scale real-world Meituan data demonstrate that our method achieves improvements of 3.80%, 2.64%, and 2.17% on R@5, R@10, and R@20, and 5.10%, 4.22%, and 2.09% on N@5, N@10, and N@20 compared to mainstream baselines. Online A/B testing on the Meituan platform shows that our approach achieves a 1.12% increase in revenue and a 1.02% increase in click-through rate, validating the effectiveness and superiority of our method in practical applications.
Abstract:Recent advancements in Large Language Models (LLMs) have greatly extended the capabilities of Multi-Agent Systems (MAS), demonstrating significant effectiveness across a wide range of complex and open-ended domains. However, despite this rapid progress, the field still relies heavily on empirical trial-and-error. It lacks a unified and principled scientific framework necessary for systematic optimization and improvement. This bottleneck stems from the ambiguity of attribution: first, the absence of a structured taxonomy of factors leaves researchers restricted to unguided adjustments; second, the lack of a unified metric fails to distinguish genuine collaboration gain from mere resource accumulation. In this paper, we advocate for a transition to design science through an integrated framework. We advocate to establish the collaboration gain metric ($Γ$) as the scientific standard to isolate intrinsic gains from increased budgets. Leveraging $Γ$, we propose a factor attribution paradigm to systematically identify collaboration-driving factors. To support this, we construct a systematic MAS factor library, structuring the design space into control-level presets and information-level dynamics. Ultimately, this framework facilitates the transition from blind experimentation to rigorous science, paving the way towards a true science of Collective AI.
Abstract:Leveraging long-term user behavioral patterns is a key trajectory for enhancing the accuracy of modern recommender systems. While generative recommender systems have emerged as a transformative paradigm, they face hurdles in effectively modeling extensive historical sequences. To address this challenge, we propose GLASS, a novel framework that integrates long-term user interests into the generative process via SID-Tier and Semantic Search. We first introduce SID-Tier, a module that maps long-term interactions into a unified interest vector to enhance the prediction of the initial SID token. Unlike traditional retrieval models that struggle with massive item spaces, SID-Tier leverages the compact nature of the semantic codebook to incorporate cross features between the user's long-term history and candidate semantic codes. Furthermore, we present semantic hard search, which utilizes generated coarse-grained semantic ID as dynamic keys to extract relevant historical behaviors, which are then fused via an adaptive gated fusion module to recalibrate the trajectory of subsequent fine-grained tokens. To address the inherent data sparsity in semantic hard search, we propose two strategies: semantic neighbor augmentation and codebook resizing. Extensive experiments on two large-scale real-world datasets, TAOBAO-MM and KuaiRec, demonstrate that GLASS outperforms state-of-the-art baselines, achieving significant gains in recommendation quality. Our codes are made publicly available to facilitate further research in generative recommendation.
Abstract:Large Vision-Language Models (LVLMs) can reason effectively from image-text inputs and perform well in various multimodal tasks. Despite this success, they are affected by language priors and often produce hallucinations. Hallucinations denote generated content that is grammatically and syntactically coherent, yet bears no match or direct relevance to actual visual input. To address this problem, we propose Residual Decoding (ResDec). It is a novel training-free method that uses historical information to aid decoding. The method relies on the internal implicit reasoning mechanism and token logits evolution mechanism of LVLMs to correct biases. Extensive experiments demonstrate that ResDec effectively suppresses hallucinations induced by language priors, significantly improves visual grounding, and reduces object hallucinations. In addition to mitigating hallucinations, ResDec also performs exceptionally well on comprehensive LVLM benchmarks, highlighting its broad applicability.
Abstract:While Visual Multi-Agent Systems (VMAS) promise to enhance comprehensive abilities through inter-agent collaboration, empirical evidence reveals a counter-intuitive "scaling wall": increasing agent turns often degrades performance while exponentially inflating token costs. We attribute this failure to the information bottleneck inherent in text-centric communication, where converting perceptual and thinking trajectories into discrete natural language inevitably induces semantic loss. To this end, we propose L$^{2}$-VMAS, a novel model-agnostic framework that enables inter-agent collaboration with dual latent memories. Furthermore, we decouple the perception and thinking while dynamically synthesizing dual latent memories. Additionally, we introduce an entropy-driven proactive triggering that replaces passive information transmission with efficient, on-demand memory access. Extensive experiments among backbones, sizes, and multi-agent structures demonstrate that our method effectively breaks the "scaling wall" with superb scalability, improving average accuracy by 2.7-5.4% while reducing token usage by 21.3-44.8%. Codes: https://github.com/YU-deep/L2-VMAS.
Abstract:Image geolocation aims to infer capture locations based on visual content. Fundamentally, this constitutes a reasoning process composed of \textit{hypothesis-verification cycles}, requiring models to possess both geospatial reasoning capabilities and the ability to verify evidence against geographic facts. Existing methods typically internalize location knowledge and reasoning patterns into static memory via supervised training or trajectory-based reinforcement fine-tuning. Consequently, these methods are prone to factual hallucinations and generalization bottlenecks in open-world settings or scenarios requiring dynamic knowledge. To address these challenges, we propose a Hierarchical Localization Agent, called LocationAgent. Our core philosophy is to retain hierarchical reasoning logic within the model while offloading the verification of geographic evidence to external tools. To implement hierarchical reasoning, we design the RER architecture (Reasoner-Executor-Recorder), which employs role separation and context compression to prevent the drifting problem in multi-step reasoning. For evidence verification, we construct a suite of clue exploration tools that provide diverse evidence to support location reasoning. Furthermore, to address data leakage and the scarcity of Chinese data in existing datasets, we introduce CCL-Bench (China City Location Bench), an image geolocation benchmark encompassing various scene granularities and difficulty levels. Extensive experiments demonstrate that LocationAgent significantly outperforms existing methods by at least 30\% in zero-shot settings.
Abstract:Geospatial reasoning is essential for real-world applications such as urban analytics, transportation planning, and disaster response. However, existing LLM-based agents often fail at genuine geospatial computation, relying instead on web search or pattern matching while hallucinating spatial relationships. We present Spatial-Agent, an AI agent grounded in foundational theories of spatial information science. Our approach formalizes geo-analytical question answering as a concept transformation problem, where natural-language questions are parsed into executable workflows represented as GeoFlow Graphs -- directed acyclic graphs with nodes corresponding to spatial concepts and edges representing transformations. Drawing on spatial information theory, Spatial-Agent extracts spatial concepts, assigns functional roles with principled ordering constraints, and composes transformation sequences through template-based generation. Extensive experiments on MapEval-API and MapQA benchmarks demonstrate that Spatial-Agent significantly outperforms existing baselines including ReAct and Reflexion, while producing interpretable and executable geospatial workflows.
Abstract:Retrieval-Augmented Generation (RAG) has emerged as a dominant paradigm for mitigating hallucinations in Large Language Models (LLMs) by incorporating external knowledge. Nevertheless, effectively integrating and interpreting key evidence scattered across noisy documents remains a critical challenge for existing RAG systems. In this paper, we propose GraphAnchor, a novel Graph-Anchored Knowledge Indexing approach that reconceptualizes graph structures from static knowledge representations into active, evolving knowledge indices. GraphAnchor incrementally updates a graph during iterative retrieval to anchor salient entities and relations, yielding a structured index that guides the LLM in evaluating knowledge sufficiency and formulating subsequent subqueries. The final answer is generated by jointly leveraging all retrieved documents and the final evolved graph. Experiments on four multi-hop question answering benchmarks demonstrate the effectiveness of GraphAnchor, and reveal that GraphAnchor modulates the LLM's attention to more effectively associate key information distributed in retrieved documents. All code and data are available at https://github.com/NEUIR/GraphAnchor.
Abstract:Dynamic graphs have attracted increasing attention due to their ability to model complex and evolving relationships in real-world scenarios. Traditional approaches typically pre-train models using dynamic link prediction and directly apply the resulting node temporal embeddings to specific downstream tasks. However, the significant differences among downstream tasks often lead to performance degradation, especially under few-shot settings. Prompt tuning has emerged as an effective solution to this problem. Existing prompting methods are often strongly coupled with specific model architectures or pretraining tasks, which makes it difficult to adapt to recent or future model designs. Moreover, their exclusive focus on modifying node or temporal features while neglecting spatial structural information leads to limited expressiveness and degraded performance. To address these limitations, we propose DDGPrompt, a data-centric prompting framework designed to effectively refine pre-trained node embeddings at the input data level, enabling better adaptability to diverse downstream tasks. We first define a unified node expression feature matrix that aggregates all relevant temporal and structural information of each node, ensuring compatibility with a wide range of dynamic graph models. Then, we introduce three prompt matrices (temporal bias, edge weight, and feature mask) to adjust the feature matrix completely, achieving task-specific adaptation of node embeddings. We evaluate DDGPrompt under a strict few-shot setting on four public dynamic graph datasets. Experimental results demonstrate that our method significantly outperforms traditional methods and prompting approaches in scenarios with limited labels and cold-start conditions.