Jack
Abstract:Multimodal Large Language Models (MLLMs) often exhibit significant modality preference, which is a tendency to favor one modality over another. Depending on the input, they may over-rely on linguistic priors relative to visual evidence, or conversely over-attend to visually salient but facts in textual contexts. Prior work has applied a uniform steering intensity to adjust the modality preference of MLLMs. However, strong steering can impair standard inference and increase error rates, whereas weak steering is often ineffective. In addition, because steering sensitivity varies substantially across multimodal instances, a single global strength is difficult to calibrate. To address this limitation with minimal disruption to inference, we introduce an instance-aware diagnostic metric that quantifies each modality's information contribution and reveals sample-specific susceptibility to steering. Building on these insights, we propose a scaling strategy that reduces steering for sensitive samples and a learnable module that infers scaling patterns, enabling instance-aware control of modality preference. Experimental results show that our instance-aware steering outperforms conventional steering in modulating modality preference, achieving effective adjustment while keeping generation error rates low.
Abstract:The evolution of large language models (LLMs) towards applications with ultra-long contexts faces challenges posed by the high computational and memory costs of the Transformer architecture. While existing sparse and linear attention mechanisms attempt to mitigate these issues, they typically involve a trade-off between memory efficiency and model performance. This paper introduces MiniCPM-SALA, a 9B-parameter hybrid architecture that integrates the high-fidelity long-context modeling of sparse attention (InfLLM-V2) with the global efficiency of linear attention (Lightning Attention). By employing a layer selection algorithm to integrate these mechanisms in a 1:3 ratio and utilizing a hybrid positional encoding (HyPE), the model maintains efficiency and performance for long-context tasks. Furthermore, we introduce a cost-effective continual training framework that transforms pre-trained Transformer-based models into hybrid models, which reduces training costs by approximately 75% compared to training from scratch. Extensive experiments show that MiniCPM-SALA maintains general capabilities comparable to full-attention models while offering improved efficiency. On a single NVIDIA A6000D GPU, the model achieves up to 3.5x the inference speed of the full-attention model at the sequence length of 256K tokens and supports context lengths of up to 1M tokens, a scale where traditional full-attention 8B models fail because of memory constraints.
Abstract:In this letter, a dual-bistatic unmanned aerial vehicles (UAVs) tracking system utilizing downlink Long-Term Evolution (LTE) signals is proposed and demonstrated. Particularly, two LTE base stations (BSs) are exploited as illumination sources. Two passive sensing receivers are deployed at different locations to detect the bistatic Doppler frequencies of the target UAV at different directions according to downlink signals transmitted from their corresponding BSs, such that the velocities of the UAV versus time can be estimated. Hence, the trajectories of the target UAV can be reconstructed. Although both the target UAV and the sensing receivers are around 200 meters away from the illuminating BSs, it is demonstrated by experiments that the tracking errors are below 50 centimeters for 90% of the complicated trajectories, when the distances between the UAV and sensing receivers are less than 30 meters. Note this accuracy is significantly better than the ranging resolution of LTE signals, high-accuracy trajectory tracking for UAV might be feasible via multi-angle bistatic Doppler measurements if the receivers are deployed with a sufficient density.
Abstract:Large vision-language models (LVLMs) have shown substantial advances in multimodal understanding and generation. However, when presented with incompetent or adversarial inputs, they frequently produce unreliable or even harmful content, such as fact hallucinations or dangerous instructions. This misalignment with human expectations, referred to as \emph{misbehaviors} of LVLMs, raises serious concerns for deployment in critical applications. These misbehaviors are found to stem from epistemic uncertainty, specifically either conflicting internal knowledge or the absence of supporting information. However, existing uncertainty quantification methods, which typically capture only overall epistemic uncertainty, have shown limited effectiveness in identifying such issues. To address this gap, we propose Evidential Uncertainty Quantification (EUQ), a fine-grained method that captures both information conflict and ignorance for effective detection of LVLM misbehaviors. In particular, we interpret features from the model output head as either supporting (positive) or opposing (negative) evidence. Leveraging Evidence Theory, we model and aggregate this evidence to quantify internal conflict and knowledge gaps within a single forward pass. We extensively evaluate our method across four categories of misbehavior, including hallucinations, jailbreaks, adversarial vulnerabilities, and out-of-distribution (OOD) failures, using state-of-the-art LVLMs, and find that EUQ consistently outperforms strong baselines, showing that hallucinations correspond to high internal conflict and OOD failures to high ignorance. Furthermore, layer-wise evidential uncertainty dynamics analysis helps interpret the evolution of internal representations from a new perspective. The source code is available at https://github.com/HT86159/EUQ.
Abstract:Autonomous vehicles (AVs) rely on multi-modal fusion for safety, but current visual and optical sensors fail to detect road-induced excitations which are critical for vehicles' dynamic control. Inspired by human synesthesia, we propose the Synesthesia of Vehicles (SoV), a novel framework to predict tactile excitations from visual inputs for autonomous vehicles. We develop a cross-modal spatiotemporal alignment method to address temporal and spatial disparities. Furthermore, a visual-tactile synesthetic (VTSyn) generative model using latent diffusion is proposed for unsupervised high-quality tactile data synthesis. A real-vehicle perception system collected a multi-modal dataset across diverse road and lighting conditions. Extensive experiments show that VTSyn outperforms existing models in temporal, frequency, and classification performance, enhancing AV safety through proactive tactile perception.
Abstract:Vision-Language-Action (VLA) models exhibit strong generalization in robotic manipulation, yet reinforcement learning (RL) fine-tuning often degrades robustness under spatial distribution shifts. For flow-matching VLA policies, this degradation is closely associated with the erosion of spatial inductive bias during RL adaptation, as sparse rewards and spatially agnostic exploration increasingly favor short-horizon visual cues. To address this issue, we propose \textbf{SA-VLA}, a spatially-aware RL adaptation framework that preserves spatial grounding during policy optimization by aligning representation learning, reward design, and exploration with task geometry. SA-VLA fuses implicit spatial representations with visual tokens, provides dense rewards that reflect geometric progress, and employs \textbf{SCAN}, a spatially-conditioned annealed exploration strategy tailored to flow-matching dynamics. Across challenging multi-object and cluttered manipulation benchmarks, SA-VLA enables stable RL fine-tuning and improves zero-shot spatial generalization, yielding more robust and transferable behaviors. Code and project page are available at https://xupan.top/Projects/savla.
Abstract:Parallel thinking enhances LLM reasoning by multi-path sampling and aggregation. In system-level evaluations, a global parallelism level N is allocated to all samples, typically set large to maximize overall dataset accuracy. However, due to sample heterogeneity, some samples can achieve comparable performance with a smaller N'< N, causing budget redundancy. This incompatibility between system-level efficacy and sample-level efficiency constitutes the overscaling curse. In this paper, we formalize and quantify the overscaling curse, showing its universality and severity in practice, and analyze its trigger mechanism. We then propose a lightweight method, T2, to break the overscaling curse, which utilizes latent representations to estimate the optimal parallelism level for each sample before decoding. Experiments show that T2 significantly reduces cost while maintaining comparable performance, enabling more efficient parallel thinking.
Abstract:Rotary Position Embedding (RoPE)-extension refers to modifying or generalizing the Rotary Position Embedding scheme to handle longer sequences than those encountered during pre-training. However, current extension strategies are highly diverse and lack a unified theoretical foundation. In this paper, we propose MrRoPE (Mixed-radix RoPE), a generalized encoding formulation based on a radix system conversion perspective, which elegantly unifies various RoPE-extension approaches as distinct radix conversion strategies. Based on this theory, we introduce two training-free extensions, MrRoPE-Uni and MrRoPE-Pro, which leverage uniform and progressive radix conversion strategies, respectively, to achieve 'train short, test long' generalization. Without fine-tuning, MrRoPE-Pro sustains over 85% recall in the 128K-context Needle-in-a-Haystack test and achieves more than double YaRN's accuracy on Infinite-Bench retrieval and dialogue subsets. Theoretical analysis confirms that MrRoPE-Pro effectively raises the upper bound of RoPE's attainable encoding length, which further validates the reliability and utility of our theory and methodology.
Abstract:Recent research in long-form video generation has shifted from bidirectional to autoregressive models, yet these methods commonly suffer from error accumulation and a loss of long-term coherence. While attention sink frames have been introduced to mitigate this performance decay, they often induce a critical failure mode we term sink-collapse: the generated content repeatedly reverts to the sink frame, resulting in abrupt scene resets and cyclic motion patterns. Our analysis reveals that sink-collapse originates from an inherent conflict between the periodic structure of Rotary Position Embedding (RoPE) and the multi-head attention mechanisms prevalent in current generative models. To address it, we propose a lightweight, training-free approach that effectively suppresses this behavior by introducing multi-head RoPE jitter that breaks inter-head attention homogenization and mitigates long-horizon collapse. Extensive experiments show that our method successfully alleviates sink-collapse while preserving generation quality. To the best of our knowledge, this work achieves the first demonstration of real-time, streaming, and infinite-length video generation with little quality decay. As an illustration of this robustness, we generate continuous videos up to 12 hours in length, which, to our knowledge, is among the longest publicly demonstrated results in streaming video generation.
Abstract:Large language models (LLMs) can call tools effectively, yet they remain brittle in multi-turn execution: following a tool call error, smaller models often degenerate into repetitive invalid re-invocations, failing to interpret error feedback and self-correct. This brittleness hinders reliable real-world deployment, where the execution errors are inherently inevitable during tool interaction procedures. We identify a key limitation of current approaches: standard reinforcement learning (RL) treats errors as sparse negative rewards, providing no guidance on how to recover, while pre-collected synthetic error-correction datasets suffer from distribution mismatch with the model's on-policy error modes. To bridge this gap, we propose Fission-GRPO, a framework that converts execution errors into corrective supervision within the RL training loop. Our core mechanism fissions each failed trajectory into a new training instance by augmenting it with diagnostic feedback from a finetuned Error Simulator, then resampling recovery rollouts on-policy. This enables the model to learn from the precise errors it makes during exploration, rather than from static, pre-collected error cases. On the BFCL v4 Multi-Turn, Fission-GRPO improves the error recovery rate of Qwen3-8B by 5.7% absolute, crucially, yielding a 4% overall accuracy gain (42.75% to 46.75%) over GRPO and outperforming specialized tool-use agents.