Jiangnan University, Wuxi, China
Abstract:Quadrupedal robots with manipulators offer strong mobility and adaptability for grasping in unstructured, dynamic environments through coordinated whole-body control. However, existing research has predominantly focused on static-object grasping, neglecting the challenges posed by dynamic targets and thus limiting applicability in dynamic scenarios such as logistics sorting and human-robot collaboration. To address this, we introduce DQ-Bench, a new benchmark that systematically evaluates dynamic grasping across varying object motions, velocities, heights, object types, and terrain complexities, along with comprehensive evaluation metrics. Building upon this benchmark, we propose DQ-Net, a compact teacher-student framework designed to infer grasp configurations from limited perceptual cues. During training, the teacher network leverages privileged information to holistically model both the static geometric properties and dynamic motion characteristics of the target, and integrates a grasp fusion module to deliver robust guidance for motion planning. Concurrently, we design a lightweight student network that performs dual-viewpoint temporal modeling using only the target mask, depth map, and proprioceptive state, enabling closed-loop action outputs without reliance on privileged data. Extensive experiments on DQ-Bench demonstrate that DQ-Net achieves robust dynamic objects grasping across multiple task settings, substantially outperforming baseline methods in both success rate and responsiveness.
Abstract:Automating penetration testing is crucial for enhancing cybersecurity, yet current Large Language Models (LLMs) face significant limitations in this domain, including poor error handling, inefficient reasoning, and an inability to perform complex end-to-end tasks autonomously. To address these challenges, we introduce Pentest-R1, a novel framework designed to optimize LLM reasoning capabilities for this task through a two-stage reinforcement learning pipeline. We first construct a dataset of over 500 real-world, multi-step walkthroughs, which Pentest-R1 leverages for offline reinforcement learning (RL) to instill foundational attack logic. Subsequently, the LLM is fine-tuned via online RL in an interactive Capture The Flag (CTF) environment, where it learns directly from environmental feedback to develop robust error self-correction and adaptive strategies. Our extensive experiments on the Cybench and AutoPenBench benchmarks demonstrate the framework's effectiveness. On AutoPenBench, Pentest-R1 achieves a 24.2\% success rate, surpassing most state-of-the-art models and ranking second only to Gemini 2.5 Flash. On Cybench, it attains a 15.0\% success rate in unguided tasks, establishing a new state-of-the-art for open-source LLMs and matching the performance of top proprietary models. Ablation studies confirm that the synergy of both training stages is critical to its success.
Abstract:The emergence of Multimodal Large Language Models (MLLMs) has driven significant advances in Graphical User Interface (GUI) agent capabilities. Nevertheless, existing GUI agent training and inference techniques still suffer from a dilemma for reasoning designs, ineffective reward, and visual noise. To address these issues, we introduce UI-AGILE, a comprehensive framework enhancing GUI agents at both the training and inference stages. For training, we propose a suite of improvements to the Supervised Fine-Tuning (SFT) process: 1) a Continuous Reward function to incentivize high-precision grounding; 2) a "Simple Thinking" reward to balance planning with speed and grounding accuracy; and 3) a Cropping-based Resampling strategy to mitigate the sparse reward problem and improve learning on complex tasks. For inference, we present Decomposed Grounding with Selection, a novel method that dramatically improves grounding accuracy on high-resolution displays by breaking the image into smaller, manageable parts. Experiments show that UI-AGILE achieves the state-of-the-art performance on two benchmarks ScreenSpot-Pro and ScreenSpot-v2. For instance, using both our proposed training and inference enhancement methods brings 23% grounding accuracy improvement over the best baseline on ScreenSpot-Pro.
Abstract:Knowledge distillation as an efficient knowledge transfer technique, has achieved remarkable success in unimodal scenarios. However, in cross-modal settings, conventional distillation methods encounter significant challenges due to data and statistical heterogeneities, failing to leverage the complementary prior knowledge embedded in cross-modal teacher models. This paper empirically reveals two critical issues in existing approaches: distillation path selection and knowledge drift. To address these limitations, we propose MST-Distill, a novel cross-modal knowledge distillation framework featuring a mixture of specialized teachers. Our approach employs a diverse ensemble of teacher models across both cross-modal and multimodal configurations, integrated with an instance-level routing network that facilitates adaptive and dynamic distillation. This architecture effectively transcends the constraints of traditional methods that rely on monotonous and static teacher models. Additionally, we introduce a plug-in masking module, independently trained to suppress modality-specific discrepancies and reconstruct teacher representations, thereby mitigating knowledge drift and enhancing transfer effectiveness. Extensive experiments across five diverse multimodal datasets, spanning visual, audio, and text, demonstrate that our method significantly outperforms existing state-of-the-art knowledge distillation methods in cross-modal distillation tasks. The source code is available at https://github.com/Gray-OREO/MST-Distill.
Abstract:In the study of drug function and precision medicine, identifying new drug-microbe associations is crucial. However, current methods isolate association and similarity analysis of drug and microbe, lacking effective inter-view optimization and coordinated multi-view feature fusion. In our study, a multi-view Divergence-Convergence Feature Augmentation framework for Drug-related Microbes Prediction (DCFA_DMP) is proposed, to better learn and integrate association information and similarity information. In the divergence phase, DCFA_DMP strengthens the complementarity and diversity between heterogeneous information and similarity information by performing Adversarial Learning method between the association network view and different similarity views, optimizing the feature space. In the convergence phase, a novel Bidirectional Synergistic Attention Mechanism is proposed to deeply synergize the complementary features between different views, achieving a deep fusion of the feature space. Moreover, Transformer graph learning is alternately applied on the drug-microbe heterogeneous graph, enabling each drug or microbe node to focus on the most relevant nodes. Numerous experiments demonstrate DCFA_DMP's significant performance in predicting drug-microbe associations. It also proves effectiveness in predicting associations for new drugs and microbes in cold start experiments, further confirming its stability and reliability in predicting potential drug-microbe associations.
Abstract:In the field of image fusion, promising progress has been made by modeling data from different modalities as linear subspaces. However, in practice, the source images are often located in a non-Euclidean space, where the Euclidean methods usually cannot encapsulate the intrinsic topological structure. Typically, the inner product performed in the Euclidean space calculates the algebraic similarity rather than the semantic similarity, which results in undesired attention output and a decrease in fusion performance. While the balance of low-level details and high-level semantics should be considered in infrared and visible image fusion task. To address this issue, in this paper, we propose a novel attention mechanism based on Grassmann manifold for infrared and visible image fusion (GrFormer). Specifically, our method constructs a low-rank subspace mapping through projection constraints on the Grassmann manifold, compressing attention features into subspaces of varying rank levels. This forces the features to decouple into high-frequency details (local low-rank) and low-frequency semantics (global low-rank), thereby achieving multi-scale semantic fusion. Additionally, to effectively integrate the significant information, we develop a cross-modal fusion strategy (CMS) based on a covariance mask to maximise the complementary properties between different modalities and to suppress the features with high correlation, which are deemed redundant. The experimental results demonstrate that our network outperforms SOTA methods both qualitatively and quantitatively on multiple image fusion benchmarks. The codes are available at https://github.com/Shaoyun2023.
Abstract:Video face restoration faces a critical challenge in maintaining temporal consistency while recovering fine facial details from degraded inputs. This paper presents a novel approach that extends Vector-Quantized Variational Autoencoders (VQ-VAEs), pretrained on static high-quality portraits, into a video restoration framework through variational latent space modeling. Our key innovation lies in reformulating discrete codebook representations as Dirichlet-distributed continuous variables, enabling probabilistic transitions between facial features across frames. A spatio-temporal Transformer architecture jointly models inter-frame dependencies and predicts latent distributions, while a Laplacian-constrained reconstruction loss combined with perceptual (LPIPS) regularization enhances both pixel accuracy and visual quality. Comprehensive evaluations on blind face restoration, video inpainting, and facial colorization tasks demonstrate state-of-the-art performance. This work establishes an effective paradigm for adapting intensive image priors, pretrained on high-quality images, to video restoration while addressing the critical challenge of flicker artifacts. The source code has been open-sourced and is available at https://github.com/fudan-generative-vision/DicFace.
Abstract:Multi-part assembly poses significant challenges for robots to execute long-horizon, contact-rich manipulation with generalization across complex geometries. We present Fabrica, a dual-arm robotic system capable of end-to-end planning and control for autonomous assembly of general multi-part objects. For planning over long horizons, we develop hierarchies of precedence, sequence, grasp, and motion planning with automated fixture generation, enabling general multi-step assembly on any dual-arm robots. The planner is made efficient through a parallelizable design and is optimized for downstream control stability. For contact-rich assembly steps, we propose a lightweight reinforcement learning framework that trains generalist policies across object geometries, assembly directions, and grasp poses, guided by equivariance and residual actions obtained from the plan. These policies transfer zero-shot to the real world and achieve 80% successful steps. For systematic evaluation, we propose a benchmark suite of multi-part assemblies resembling industrial and daily objects across diverse categories and geometries. By integrating efficient global planning and robust local control, we showcase the first system to achieve complete and generalizable real-world multi-part assembly without domain knowledge or human demonstrations. Project website: http://fabrica.csail.mit.edu/
Abstract:Real-world applications like video gaming and virtual reality often demand the ability to model 3D scenes that users can explore along custom camera trajectories. While significant progress has been made in generating 3D objects from text or images, creating long-range, 3D-consistent, explorable 3D scenes remains a complex and challenging problem. In this work, we present Voyager, a novel video diffusion framework that generates world-consistent 3D point-cloud sequences from a single image with user-defined camera path. Unlike existing approaches, Voyager achieves end-to-end scene generation and reconstruction with inherent consistency across frames, eliminating the need for 3D reconstruction pipelines (e.g., structure-from-motion or multi-view stereo). Our method integrates three key components: 1) World-Consistent Video Diffusion: A unified architecture that jointly generates aligned RGB and depth video sequences, conditioned on existing world observation to ensure global coherence 2) Long-Range World Exploration: An efficient world cache with point culling and an auto-regressive inference with smooth video sampling for iterative scene extension with context-aware consistency, and 3) Scalable Data Engine: A video reconstruction pipeline that automates camera pose estimation and metric depth prediction for arbitrary videos, enabling large-scale, diverse training data curation without manual 3D annotations. Collectively, these designs result in a clear improvement over existing methods in visual quality and geometric accuracy, with versatile applications.
Abstract:The Science of Science (SoS) explores the mechanisms underlying scientific discovery, and offers valuable insights for enhancing scientific efficiency and fostering innovation. Traditional approaches often rely on simplistic assumptions and basic statistical tools, such as linear regression and rule-based simulations, which struggle to capture the complexity and scale of modern research ecosystems. The advent of artificial intelligence (AI) presents a transformative opportunity for the next generation of SoS, enabling the automation of large-scale pattern discovery and uncovering insights previously unattainable. This paper offers a forward-looking perspective on the integration of Science of Science with AI for automated research pattern discovery and highlights key open challenges that could greatly benefit from AI. We outline the advantages of AI over traditional methods, discuss potential limitations, and propose pathways to overcome them. Additionally, we present a preliminary multi-agent system as an illustrative example to simulate research societies, showcasing AI's ability to replicate real-world research patterns and accelerate progress in Science of Science research.