Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Ghassen Jerfel

Sparse MoEs meet Efficient Ensembles

Oct 07, 2021
James Urquhart Allingham, Florian Wenzel, Zelda E Mariet, Basil Mustafa, Joan Puigcerver, Neil Houlsby, Ghassen Jerfel, Vincent Fortuin, Balaji Lakshminarayanan, Jasper Snoek, Dustin Tran, Carlos Riquelme Ruiz, Rodolphe Jenatton

* 44 pages, 19 figures, 24 tables 

  Access Paper or Ask Questions

Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence

Jun 30, 2021
Ghassen Jerfel, Serena Wang, Clara Fannjiang, Katherine A. Heller, Yian Ma, Michael I. Jordan

* Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021) 

  Access Paper or Ask Questions

Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning

Jun 07, 2021
Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael W. Dusenberry, Sebastian Farquhar, Angelos Filos, Marton Havasi, Rodolphe Jenatton, Ghassen Jerfel, Jeremiah Liu, Zelda Mariet, Jeremy Nixon, Shreyas Padhy, Jie Ren, Tim G. J. Rudner, Yeming Wen, Florian Wenzel, Kevin Murphy, D. Sculley, Balaji Lakshminarayanan, Jasper Snoek, Yarin Gal, Dustin Tran

  Access Paper or Ask Questions

Underspecification Presents Challenges for Credibility in Modern Machine Learning

Nov 06, 2020
Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley

  Access Paper or Ask Questions

Combining Ensembles and Data Augmentation can Harm your Calibration

Oct 19, 2020
Yeming Wen, Ghassen Jerfel, Rafael Muller, Michael W. Dusenberry, Jasper Snoek, Balaji Lakshminarayanan, Dustin Tran

  Access Paper or Ask Questions

Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors

May 14, 2020
Michael W. Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-an Ma, Jasper Snoek, Katherine Heller, Balaji Lakshminarayanan, Dustin Tran

* Code available at 

  Access Paper or Ask Questions

Analyzing the Role of Model Uncertainty for Electronic Health Records

Jun 10, 2019
Michael W. Dusenberry, Dustin Tran, Edward Choi, Jonas Kemp, Jeremy Nixon, Ghassen Jerfel, Katherine Heller, Andrew M. Dai

* Presented at the ICML 2019 Workshop on Uncertainty & Robustness in Deep Learning. Code to be open-sourced 

  Access Paper or Ask Questions

AdaNet: A Scalable and Flexible Framework for Automatically Learning Ensembles

Apr 30, 2019
Charles Weill, Javier Gonzalvo, Vitaly Kuznetsov, Scott Yang, Scott Yak, Hanna Mazzawi, Eugen Hotaj, Ghassen Jerfel, Vladimir Macko, Ben Adlam, Mehryar Mohri, Corinna Cortes

  Access Paper or Ask Questions

Measuring Calibration in Deep Learning

Apr 02, 2019
Jeremy Nixon, Mike Dusenberry, Linchuan Zhang, Ghassen Jerfel, Dustin Tran

  Access Paper or Ask Questions

Online gradient-based mixtures for transfer modulation in meta-learning

Dec 17, 2018
Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, Katherine Heller

  Access Paper or Ask Questions

Dynamic Collaborative Filtering with Compound Poisson Factorization

Nov 01, 2016
Ghassen Jerfel, Mehmet E. Basbug, Barbara E. Engelhardt

  Access Paper or Ask Questions