Abstract:Recent advances in text-to-image diffusion models have demonstrated remarkable generation capabilities, yet they raise significant concerns regarding safety, copyright, and ethical implications. Existing concept erasure methods address these risks by removing sensitive concepts from pre-trained models, but most of them rely on data-intensive and computationally expensive fine-tuning, which poses a critical limitation. To overcome these challenges, inspired by the observation that the model's activations are predominantly composed of generic concepts, with only a minimal component can represent the target concept, we propose a novel training-free method (ActErase) for efficient concept erasure. Specifically, the proposed method operates by identifying activation difference regions via prompt-pair analysis, extracting target activations and dynamically replacing input activations during forward passes. Comprehensive evaluations across three critical erasure tasks (nudity, artistic style, and object removal) demonstrates that our training-free method achieves state-of-the-art (SOTA) erasure performance, while effectively preserving the model's overall generative capability. Our approach also exhibits strong robustness against adversarial attacks, establishing a new plug-and-play paradigm for lightweight yet effective concept manipulation in diffusion models.
Abstract:The recent advent of 3D Gaussian Splatting (3DGS) has marked a significant breakthrough in real-time novel view synthesis. However, the rapid proliferation of 3DGS-based algorithms has created a pressing need for standardized and comprehensive evaluation tools, especially for compression task. Existing benchmarks often lack the specific metrics necessary to holistically assess the unique characteristics of different methods, such as rendering speed, rate distortion trade-offs memory efficiency, and geometric accuracy. To address this gap, we introduce Splatwizard, a unified benchmark toolkit designed specifically for benchmarking 3DGS compression models. Splatwizard provides an easy-to-use framework to implement new 3DGS compression model and utilize state-of-the-art techniques proposed by previous work. Besides, an integrated pipeline that automates the calculation of key performance indicators, including image-based quality metrics, chamfer distance of reconstruct mesh, rendering frame rates, and computational resource consumption is included in the framework as well. Code is available at https://github.com/splatwizard/splatwizard
Abstract:Evaluating the alignment between textual prompts and generated images is critical for ensuring the reliability and usability of text-to-image (T2I) models. However, most existing evaluation methods rely on coarse-grained metrics or static QA pipelines, which lack fine-grained interpretability and struggle to reflect human preferences. To address this, we propose REVEALER, a unified framework for element-level alignment evaluation based on reinforcement-guided visual reasoning. Adopting a structured "grounding-reasoning-conclusion" paradigm, our method enables Multimodal Large Language Models (MLLMs) to explicitly localize semantic elements and derive interpretable alignment judgments. We optimize the model via Group Relative Policy Optimization(GRPO) using a composite reward function that incorporates structural format, grounding accuracy, and alignment fidelity. Extensive experiments across four benchmarks-EvalMuse-40K, RichHF, MHaluBench, and GenAI-Bench-demonstrate that REVEALER achieves state-of-the-art performance. Our approach consistently outperforms both strong proprietary models and supervised baselines while demonstrating superior inference efficiency compared to existing iterative visual reasoning methods.




Abstract:Text-conditioned molecular generation aims to translate natural-language descriptions into chemical structures, enabling scientists to specify functional groups, scaffolds, and physicochemical constraints without handcrafted rules. Diffusion-based models, particularly latent diffusion models (LDMs), have recently shown promise by performing stochastic search in a continuous latent space that compactly captures molecular semantics. Yet existing methods rely on one-shot conditioning, where the entire prompt is encoded once and applied throughout diffusion, making it hard to satisfy all the requirements in the prompt. We discuss three outstanding challenges of one-shot conditioning generation, including the poor interpretability of the generated components, the failure to generate all substructures, and the overambition in considering all requirements simultaneously. We then propose three principles to address those challenges, motivated by which we propose Chain-of-Generation (CoG), a training-free multi-stage latent diffusion framework. CoG decomposes each prompt into curriculum-ordered semantic segments and progressively incorporates them as intermediate goals, guiding the denoising trajectory toward molecules that satisfy increasingly rich linguistic constraints. To reinforce semantic guidance, we further introduce a post-alignment learning phase that strengthens the correspondence between textual and molecular latent spaces. Extensive experiments on benchmark and real-world tasks demonstrate that CoG yields higher semantic alignment, diversity, and controllability than one-shot baselines, producing molecules that more faithfully reflect complex, compositional prompts while offering transparent insight into the generation process.
Abstract:Evaluating large language models (LLMs) for software engineering has been limited by narrow task coverage, language bias, and insufficient alignment with real-world developer workflows. Existing benchmarks often focus on algorithmic problems or Python-centric bug fixing, leaving critical dimensions of software engineering underexplored. To address these gaps, we introduce SWE-Compass1, a comprehensive benchmark that unifies heterogeneous code-related evaluations into a structured and production-aligned framework. SWE-Compass spans 8 task types, 8 programming scenarios, and 10 programming languages, with 2000 high-quality instances curated from authentic GitHub pull requests and refined through systematic filtering and validation. We benchmark ten state-of-the-art LLMs under two agentic frameworks, SWE-Agent and Claude Code, revealing a clear hierarchy of difficulty across task types, languages, and scenarios. Moreover, by aligning evaluation with real-world developer practices, SWE-Compass provides a rigorous and reproducible foundation for diagnosing and advancing agentic coding capabilities in large language models.
Abstract:The rapid progress of visual autoregressive (VAR) models has brought new opportunities for text-to-image generation, but also heightened safety concerns. Existing concept erasure techniques, primarily designed for diffusion models, fail to generalize to VARs due to their next-scale token prediction paradigm. In this paper, we first propose a novel VAR Erasure framework VARE that enables stable concept erasure in VAR models by leveraging auxiliary visual tokens to reduce fine-tuning intensity. Building upon this, we introduce S-VARE, a novel and effective concept erasure method designed for VAR, which incorporates a filtered cross entropy loss to precisely identify and minimally adjust unsafe visual tokens, along with a preservation loss to maintain semantic fidelity, addressing the issues such as language drift and reduced diversity introduce by na\"ive fine-tuning. Extensive experiments demonstrate that our approach achieves surgical concept erasure while preserving generation quality, thereby closing the safety gap in autoregressive text-to-image generation by earlier methods.
Abstract:In this work, we focus on the efficiency and scalability of pairwise constraint-based active clustering, crucial for processing large-scale data in applications such as data mining, knowledge annotation, and AI model pre-training. Our goals are threefold: (1) to reduce computational costs for iterative clustering updates; (2) to enhance the impact of user-provided constraints to minimize annotation requirements for precise clustering; and (3) to cut down memory usage in practical deployments. To achieve these aims, we propose a graph-based active clustering algorithm that utilizes two sparse graphs: one for representing relationships between data (our proposed data skeleton) and another for updating this data skeleton. These two graphs work in concert, enabling the refinement of connected subgraphs within the data skeleton to create nested clusters. Our empirical analysis confirms that the proposed algorithm consistently facilitates more accurate clustering with dramatically less input of user-provided constraints, and outperforms its counterparts in terms of computational performance and scalability, while maintaining robustness across various distance metrics.
Abstract:We present QZhou-Embedding, a general-purpose contextual text embedding model with exceptional text representation capabilities. Built upon the Qwen2.5-7B-Instruct foundation model, we designed a unified multi-task framework comprising specialized data transformation and training strategies. The data transformation scheme enables the incorporation of more diverse textual training datasets, while the task-specific training strategies enhance model learning efficiency. We developed a data synthesis pipeline leveraging LLM API, incorporating techniques such as paraphrasing, augmentation, and hard negative example generation to improve the semantic richness and sample difficulty of the training set. Additionally, we employ a two-stage training strategy, comprising initial retrieval-focused pretraining followed by full-task fine-tuning, enabling the embedding model to extend its capabilities based on robust retrieval performance. Our model achieves state-of-the-art results on the MTEB and CMTEB benchmarks, ranking first on both leaderboards (August 27 2025), and simultaneously achieves state-of-the-art performance on tasks including reranking, clustering, etc. Our findings demonstrate that higher-quality, more diverse data is crucial for advancing retrieval model performance, and that leveraging LLMs generative capabilities can further optimize data quality for embedding model breakthroughs. Our model weights are released on HuggingFace under Apache 2.0 license. For reproducibility, we provide evaluation code and instructions on GitHub.
Abstract:We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.
Abstract:Previous studies on multimodal fake news detection mainly focus on the alignment and integration of cross-modal features, as well as the application of text-image consistency. However, they overlook the semantic enhancement effects of large multimodal models and pay little attention to the emotional features of news. In addition, people find that fake news is more inclined to contain negative emotions than real ones. Therefore, we propose a novel Semantic Enhancement and Emotional Reasoning (SEER) Network for multimodal fake news detection. We generate summarized captions for image semantic understanding and utilize the products of large multimodal models for semantic enhancement. Inspired by the perceived relationship between news authenticity and emotional tendencies, we propose an expert emotional reasoning module that simulates real-life scenarios to optimize emotional features and infer the authenticity of news. Extensive experiments on two real-world datasets demonstrate the superiority of our SEER over state-of-the-art baselines.