University of Science and Technology of China
Abstract:Large Language Models (LLMs) are increasingly deployed in human-centric applications, yet they often fail to provide substantive emotional support. While Reinforcement Learning (RL) has been utilized to enhance empathy of LLMs, existing reward models typically evaluate empathy from a single perspective, overlooking the inherently bidirectional interaction nature of empathy between the supporter and seeker as defined by Empathy Cycle theory. To address this limitation, we propose Psychology-grounded Empathetic Reward Modeling (PERM). PERM operationalizes empathy evaluation through a bidirectional decomposition: 1) Supporter perspective, assessing internal resonation and communicative expression; 2) Seeker perspective, evaluating emotional reception. Additionally, it incorporates a bystander perspective to monitor overall interaction quality. Extensive experiments on a widely-used emotional intelligence benchmark and an industrial daily conversation dataset demonstrate that PERM outperforms state-of-the-art baselines by over 10\%. Furthermore, a blinded user study reveals a 70\% preference for our approach, highlighting its efficacy in generating more empathetic responses. Our code, dataset, and models are available at https://github.com/ZhengWwwq/PERM.
Abstract:Conventional physically based rendering (PBR) pipelines generate photorealistic images through computationally intensive light transport simulations. Although recent deep learning approaches leverage diffusion model priors with geometry buffers (G-buffers) to produce visually compelling results without explicit scene geometry or light simulation, they remain constrained by two major limitations. First, the iterative nature of the diffusion process introduces substantial latency. Second, the inherent stochasticity of these generative models compromises physical accuracy and temporal consistency. In response to these challenges, we propose a novel, end-to-end, deterministic, single-step neural rendering framework, RenderFlow, built upon a flow matching paradigm. To further strengthen both rendering quality and generalization, we propose an efficient and effective module for sparse keyframe guidance. Our method significantly accelerates the rendering process and, by optionally incorporating sparsely rendered keyframes as guidance, enhances both the physical plausibility and overall visual quality of the output. The resulting pipeline achieves near real-time performance with photorealistic rendering quality, effectively bridging the gap between the efficiency of modern generative models and the precision of traditional physically based rendering. Furthermore, we demonstrate the versatility of our framework by introducing a lightweight, adapter-based module that efficiently repurposes the pretrained forward model for the inverse rendering task of intrinsic decomposition.
Abstract:While Large Language Models (LLMs) have achieved remarkable success in formal learning tasks such as mathematics and code generation, they still struggle with the "practical wisdom" and generalizable intelligence, such as strategic creativity and social reasoning, that characterize human cognition. This gap arises from a lack of informal learning, which thrives on interactive feedback rather than goal-oriented instruction. In this paper, we propose treating Games as a primary environment for LLM informal learning, leveraging their intrinsic reward signals and abstracted complexity to cultivate diverse competencies. To address the performance degradation observed in multi-task learning, we introduce a Nested Training Framework. Unlike naive task mixing optimizing an implicit "OR" objective, our framework employs sequential task composition to enforce an explicit "AND" objective, compelling the model to master multiple abilities simultaneously to achieve maximal rewards. Using GRPO-based reinforcement learning across Matrix Games, TicTacToe, and Who's the Spy games, we demonstrate that integrating game-based informal learning not only prevents task interference but also significantly bolsters the model's generalization across broad ability-oriented benchmarks. The framework and implementation are publicly available.
Abstract:Soft boundaries, like thin hairs, are commonly observed in natural and computer-generated imagery, but they remain challenging for 3D vision due to the ambiguous mixing of foreground and background cues. This paper introduces Guardians of the Hair (HairGuard), a framework designed to recover fine-grained soft boundary details in 3D vision tasks. Specifically, we first propose a novel data curation pipeline that leverages image matting datasets for training and design a depth fixer network to automatically identify soft boundary regions. With a gated residual module, the depth fixer refines depth precisely around soft boundaries while maintaining global depth quality, allowing plug-and-play integration with state-of-the-art depth models. For view synthesis, we perform depth-based forward warping to retain high-fidelity textures, followed by a generative scene painter that fills disoccluded regions and eliminates redundant background artifacts within soft boundaries. Finally, a color fuser adaptively combines warped and inpainted results to produce novel views with consistent geometry and fine-grained details. Extensive experiments demonstrate that HairGuard achieves state-of-the-art performance across monocular depth estimation, stereo image/video conversion, and novel view synthesis, with significant improvements in soft boundary regions.
Abstract:The efficient deployment of large language models (LLMs) is hindered by memory architecture heterogeneity, where traditional compilers suffer from fragmented workflows and high adaptation costs. We present nncase, an open-source, end-to-end compilation framework designed to unify optimization across diverse targets. Central to nncase is an e-graph-based term rewriting engine that mitigates the phase ordering problem, enabling global exploration of computation and data movement strategies. The framework integrates three key modules: Auto Vectorize for adapting to heterogeneous computing units, Auto Distribution for searching parallel strategies with cost-aware communication optimization, and Auto Schedule for maximizing on-chip cache locality. Furthermore, a buffer-aware Codegen phase ensures efficient kernel instantiation. Evaluations show that nncase outperforms mainstream frameworks like MLC LLM and Intel IPEX on Qwen3 series models and achieves performance comparable to the hand-optimized llama.cpp on CPUs, demonstrating the viability of automated compilation for high-performance LLM deployment. The source code is available at https://github.com/kendryte/nncase.
Abstract:With the rise of cloud-edge collaboration, recommendation services are increasingly trained in distributed environments. Federated Recommendation (FR) enables such multi-end collaborative training while preserving privacy by sharing model parameters instead of raw data. However, the large number of parameters, primarily due to the massive item embeddings, significantly hampers communication efficiency. While existing studies mainly focus on improving the efficiency of FR models, they largely overlook the issue of embedding parameter overhead. To address this gap, we propose a FR training framework with Parameter-Efficient Fine-Tuning (PEFT) based embedding designed to reduce the volume of embedding parameters that need to be transmitted. Our approach offers a lightweight, plugin-style solution that can be seamlessly integrated into existing FR methods. In addition to incorporating common PEFT techniques such as LoRA and Hash-based encoding, we explore the use of Residual Quantized Variational Autoencoders (RQ-VAE) as a novel PEFT strategy within our framework. Extensive experiments across various FR model backbones and datasets demonstrate that our framework significantly reduces communication overhead while improving accuracy. The source code is available at https://github.com/young1010/FedPEFT.
Abstract:Recent advances in generative models have demonstrated an exceptional ability to produce highly realistic images. However, previous studies show that generated images often resemble the training data, and this problem becomes more severe as the model size increases. Memorizing training data can lead to legal challenges, including copyright infringement, violations of portrait rights, and trademark violations. Existing approaches to mitigating memorization mainly focus on manipulating the denoising sampling process to steer image embeddings away from the memorized embedding space or employ unlearning methods that require training on datasets containing specific sets of memorized concepts. However, existing methods often incur substantial computational overhead during sampling, or focus narrowly on removing one or more groups of target concepts, imposing a significant limitation on their scalability. To understand and mitigate these problems, our work, UniForget, offers a new perspective on understanding the root cause of memorization. Our work demonstrates that specific parts of the model are responsible for copyrighted content generation. By applying model pruning, we can effectively suppress the probability of generating copyrighted content without targeting specific concepts while preserving the general generative capabilities of the model. Additionally, we show that our approach is both orthogonal and complementary to existing unlearning methods, thereby highlighting its potential to improve current unlearning and de-memorization techniques.
Abstract:Integrating event cameras with Multimodal Large Language Models (MLLMs) promises general scene understanding in challenging visual conditions, yet requires navigating a trade-off between preserving the unique advantages of event data and ensuring compatibility with frame-based models. We address this challenge by using reconstruction as a bridge, proposing a straightforward Frame-based Reconstruction and Tokenization (FRT) method and designing an efficient Adaptive Reconstruction and Tokenization (ART) method that leverages event sparsity. For robust evaluation, we introduce EvQA, the first objective, real-world benchmark for event-based MLLMs, comprising 1,000 event-Q&A pairs from 22 public datasets. Our experiments demonstrate that our methods achieve state-of-the-art performance on EvQA, highlighting the significant potential of MLLMs in event-based vision.
Abstract:Large Language Models (LLMs) are increasingly integrated into users' daily lives, driving a growing demand for personalized outputs. Prior work has primarily leveraged a user's own history, often overlooking inter-user differences that are critical for effective personalization. While recent methods have attempted to model such differences, their feature extraction processes typically rely on fixed dimensions and quick, intuitive inference (System-1 thinking), limiting both the coverage and granularity of captured user differences. To address these limitations, we propose Difference-aware Reasoning Personalization (DRP), a framework that reconstructs the difference extraction mechanism by leveraging inference scaling to enhance LLM personalization. DRP autonomously identifies relevant difference feature dimensions and generates structured definitions and descriptions, enabling slow, deliberate reasoning (System-2 thinking) over user differences. Experiments on personalized review generation demonstrate that DRP consistently outperforms baseline methods across multiple metrics.




Abstract:Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing the reasoning capabilities of large language models (LLMs). While RL has demonstrated substantial performance gains, it still faces key challenges, including low sampling efficiency and a strong dependence on model initialization: some models achieve rapid improvements with minimal RL steps, while others require significant training data to make progress. In this work, we investigate these challenges through the lens of reasoning token coverage and argue that initializing LLMs with diverse, high-quality reasoning primitives is essential for achieving stable and sample-efficient RL training. We propose Tailor, a finetuning pipeline that automatically discovers and curates novel reasoning primitives, thereby expanding the coverage of reasoning-state distributions before RL. Extensive experiments on mathematical and logical reasoning benchmarks demonstrate that Tailor generates more diverse and higher-quality warm-start data, resulting in higher downstream RL performance.