and Other Contributors
Abstract:Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
Abstract:Reinforcement learning (RL) post-training has increasingly demonstrated strong ability to elicit reasoning behaviors in large language models (LLMs). For training efficiency, rollouts are typically generated in an off-policy manner using an older sampling policy and then used to update the current target policy. To correct the resulting discrepancy between the sampling and target policies, most existing RL objectives rely on a token-level importance sampling ratio, primarily due to its computational simplicity and numerical stability. However, we observe that token-level correction often leads to unstable training dynamics when the degree of off-policyness is large. In this paper, we revisit LLM policy optimization under off-policy conditions and show that the theoretically rigorous correction term is the prefix importance ratio, and that relaxing it to a token-level approximation can induce instability in RL post-training. To stabilize LLM optimization under large off-policy drift, we propose a simple yet effective objective, Minimum Prefix Ratio (MinPRO). MinPRO replaces the unstable cumulative prefix ratio with a non-cumulative surrogate based on the minimum token-level ratio observed in the preceding prefix. Extensive experiments on both dense and mixture-of-experts LLMs, across multiple mathematical reasoning benchmarks, demonstrate that MinPRO substantially improves training stability and peak performance in off-policy regimes.
Abstract:Self-Rewarding Language Models (SRLMs) achieve notable success in iteratively improving alignment without external feedback. Yet, despite their striking empirical progress, the core mechanisms driving their capabilities remain unelucidated, leaving a critical gap in theoretical understanding. This paper provides the first rigorous theoretical guarantees for SRLMs. We first establish a lower bound that characterizes the fundamental limits of a single update step, revealing a critical dependence on the quality of the initial model. We then derive finite-sample error bounds for the full iterative paradigm, showing that performance improves at a rate of $\widetilde{\mathcal{O}}\left(1/\sqrt{n}\right)$ with sample size $n$. Crucially, our analysis reveals that the dependence on the initial model decays exponentially with the number of iterations $T$. This provides a formal explanation for why self-rewarding succeeds: it robustly overcomes poor initialization by steering the dynamics toward internal stability and consistency. Finally, we instantiate our theoretical framework for the linear softmax model class, yielding tailored guarantees that connect our high-level insights to practical model architectures.
Abstract:While Diffusion Language Models (DLMs) offer a flexible, arbitrary-order alternative to the autoregressive paradigm, their non-causal nature precludes standard KV caching, forcing costly hidden state recomputation at every decoding step. Existing DLM caching approaches reduce this cost by selective hidden state updates; however, they are still limited by (i) costly token-wise update identification heuristics and (ii) rigid, uniform budget allocation that fails to account for heterogeneous hidden state dynamics. To address these challenges, we present SPA-Cache that jointly optimizes update identification and budget allocation in DLM cache. First, we derive a low-dimensional singular proxy that enables the identification of update-critical tokens in a low-dimensional subspace, substantially reducing the overhead of update identification. Second, we introduce an adaptive strategy that allocates fewer updates to stable layers without degrading generation quality. Together, these contributions significantly improve the efficiency of DLMs, yielding up to an $8\times$ throughput improvement over vanilla decoding and a $2$--$4\times$ speedup over existing caching baselines.
Abstract:Long-context reasoning has significantly empowered large language models (LLMs) to tackle complex tasks, yet it introduces severe efficiency bottlenecks due to the computational complexity. Existing efficient approaches often rely on complex additional training or external models for compression, which limits scalability and discards critical fine-grained information. In this paper, we propose VTC-R1, a new efficient reasoning paradigm that integrates vision-text compression into the reasoning process. Instead of processing lengthy textual traces, VTC-R1 renders intermediate reasoning segments into compact images, which are iteratively fed back into vision-language models as "optical memory." We construct a training dataset based on OpenR1-Math-220K achieving 3.4x token compression and fine-tune representative VLMs-Glyph and Qwen3-VL. Extensive experiments on benchmarks such as MATH500, AIME25, AMC23 and GPQA-D demonstrate that VTC-R1 consistently outperforms standard long-context reasoning. Furthermore, our approach significantly improves inference efficiency, achieving 2.7x speedup in end-to-end latency, highlighting its potential as a scalable solution for reasoning-intensive applications. Our code is available at https://github.com/w-yibo/VTC-R1.
Abstract:While Large Language Models (LLMs) excel in language-based agentic tasks, their applicability to unseen, nonlinguistic environments (e.g., symbolic or spatial tasks) remains limited. Previous work attributes this performance gap to the mismatch between the pretraining distribution and the testing distribution. In this work, we demonstrate the primary bottleneck is the prohibitive cost of exploration: mastering these tasks requires extensive trial-and-error, which is computationally unsustainable for parameter-heavy LLMs operating in a high dimensional semantic space. To address this, we propose SCOUT (Sub-Scale Collaboration On Unseen Tasks), a novel framework that decouples exploration from exploitation. We employ lightweight "scouts" (e.g., small MLPs) to probe environmental dynamics at a speed and scale far exceeding LLMs. The collected trajectories are utilized to bootstrap the LLM via Supervised Fine-Tuning (SFT), followed by multi-turn Reinforcement Learning (RL) to activate its latent world knowledge. Empirically, SCOUT enables a Qwen2.5-3B-Instruct model to achieve an average score of 0.86, significantly outperforming proprietary models, including Gemini-2.5-Pro (0.60), while saving about 60% GPU hours consumption.
Abstract:We study partial-feedback online learning, where each instance admits a set of correct labels, but the learner only observes one correct label per round; any prediction within the correct set is counted as correct. This model captures settings such as language generation, where multiple responses may be valid but data provide only a single reference. We give a near-complete characterization of minimax regret for both deterministic and randomized learners in the set-realizable regime, i.e., in the regime where sublinear regret is generally attainable. For deterministic learners, we introduce the Partial-Feedback Littlestone dimension (PFLdim) and show it precisely governs learnability and minimax regret; technically, PFLdim cannot be defined via the standard version space, requiring a new collection version space viewpoint and an auxiliary dimension used only in the proof. We further develop the Partial-Feedback Measure Shattering dimension (PMSdim) to obtain tight bounds for randomized learners. We identify broad conditions ensuring inseparability between deterministic and randomized learnability (e.g., finite Helly number or nested-inclusion label structure), and extend the argument to set-valued online learning, resolving an open question of Raman et al. [2024b]. Finally, we show a sharp separation from weaker realistic and agnostic variants: outside set realizability, the problem can become information-theoretically intractable, with linear regret possible even for $|H|=2$. This highlights the need for fundamentally new, noise-sensitive complexity measures to meaningfully characterize learnability beyond set realizability.
Abstract:Mixture-of-Agents (MoA) improves LLM performance through layered collaboration, but its dense topology raises costs and latency. Existing methods employ LLM judges to filter responses, yet still require all models to perform inference before judging, failing to cut costs effectively. They also lack model selection criteria and struggle with large model pools, where full inference is costly and can exceed context limits. To address this, we propose RouteMoA, an efficient mixture-of-agents framework with dynamic routing. It employs a lightweight scorer to perform initial screening by predicting coarse-grained performance from the query, narrowing candidates to a high-potential subset without inference. A mixture of judges then refines these scores through lightweight self- and cross-assessment based on existing model outputs, providing posterior correction without additional inference. Finally, a model ranking mechanism selects models by balancing performance, cost, and latency. RouteMoA outperforms MoA across varying tasks and model pool sizes, reducing cost by 89.8% and latency by 63.6% in the large-scale model pool.
Abstract:Large-scale language models (LLMs) often offer clinical judgments based on incomplete information, increasing the risk of misdiagnosis. Existing studies have primarily evaluated confidence in single-turn, static settings, overlooking the coupling between confidence and correctness as clinical evidence accumulates during real consultations, which limits their support for reliable decision-making. We propose the first benchmark for assessing confidence in multi-turn interaction during realistic medical consultations. Our benchmark unifies three types of medical data for open-ended diagnostic generation and introduces an information sufficiency gradient to characterize the confidence-correctness dynamics as evidence increases. We implement and compare 27 representative methods on this benchmark; two key insights emerge: (1) medical data amplifies the inherent limitations of token-level and consistency-level confidence methods, and (2) medical reasoning must be evaluated for both diagnostic accuracy and information completeness. Based on these insights, we present MedConf, an evidence-grounded linguistic self-assessment framework that constructs symptom profiles via retrieval-augmented generation, aligns patient information with supporting, missing, and contradictory relations, and aggregates them into an interpretable confidence estimate through weighted integration. Across two LLMs and three medical datasets, MedConf consistently outperforms state-of-the-art methods on both AUROC and Pearson correlation coefficient metrics, maintaining stable performance under conditions of information insufficiency and multimorbidity. These results demonstrate that information adequacy is a key determinant of credible medical confidence modeling, providing a new pathway toward building more reliable and interpretable large medical models.
Abstract:The paradigm of Large Language Models (LLMs) is currently defined by auto-regressive (AR) architectures, which generate text through a sequential ``brick-by-brick'' process. Despite their success, AR models are inherently constrained by a causal bottleneck that limits global structural foresight and iterative refinement. Diffusion Language Models (DLMs) offer a transformative alternative, conceptualizing text generation as a holistic, bidirectional denoising process akin to a sculptor refining a masterpiece. However, the potential of DLMs remains largely untapped as they are frequently confined within AR-legacy infrastructures and optimization frameworks. In this Perspective, we identify ten fundamental challenges ranging from architectural inertia and gradient sparsity to the limitations of linear reasoning that prevent DLMs from reaching their ``GPT-4 moment''. We propose a strategic roadmap organized into four pillars: foundational infrastructure, algorithmic optimization, cognitive reasoning, and unified multimodal intelligence. By shifting toward a diffusion-native ecosystem characterized by multi-scale tokenization, active remasking, and latent thinking, we can move beyond the constraints of the causal horizon. We argue that this transition is essential for developing next-generation AI capable of complex structural reasoning, dynamic self-correction, and seamless multimodal integration.