Abstract:Detecting toxic content using language models is important but challenging. While large language models (LLMs) have demonstrated strong performance in understanding Chinese, recent studies show that simple character substitutions in toxic Chinese text can easily confuse the state-of-the-art (SOTA) LLMs. In this paper, we highlight the multimodal nature of Chinese language as a key challenge for deploying LLMs in toxic Chinese detection. First, we propose a taxonomy of 3 perturbation strategies and 8 specific approaches in toxic Chinese content. Then, we curate a dataset based on this taxonomy, and benchmark 9 SOTA LLMs (from both the US and China) to assess if they can detect perturbed toxic Chinese text. Additionally, we explore cost-effective enhancement solutions like in-context learning (ICL) and supervised fine-tuning (SFT). Our results reveal two important findings. (1) LLMs are less capable of detecting perturbed multimodal Chinese toxic contents. (2) ICL or SFT with a small number of perturbed examples may cause the LLMs "overcorrect'': misidentify many normal Chinese contents as toxic.
Abstract:Large language models (LLMs) have shown impressive capabilities across a wide range of applications, but their ever-increasing size and resource demands make them vulnerable to inference cost attacks, where attackers induce victim LLMs to generate the longest possible output content. In this paper, we revisit existing inference cost attacks and reveal that these methods can hardly produce large-scale malicious effects since they are self-targeting, where attackers are also the users and therefore have to execute attacks solely through the inputs, whose generated content will be charged by LLMs and can only directly influence themselves. Motivated by these findings, this paper introduces a new type of inference cost attacks (dubbed 'bit-flip inference cost attack') that target the victim model itself rather than its inputs. Specifically, we design a simple yet effective method (dubbed 'BitHydra') to effectively flip critical bits of model parameters. This process is guided by a loss function designed to suppress <EOS> token's probability with an efficient critical bit search algorithm, thus explicitly defining the attack objective and enabling effective optimization. We evaluate our method on 11 LLMs ranging from 1.5B to 14B parameters under both int8 and float16 settings. Experimental results demonstrate that with just 4 search samples and as few as 3 bit flips, BitHydra can force 100% of test prompts to reach the maximum generation length (e.g., 2048 tokens) on representative LLMs such as LLaMA3, highlighting its efficiency, scalability, and strong transferability across unseen inputs.
Abstract:Toxicity detection in multimodal text-image content faces growing challenges, especially with multimodal implicit toxicity, where each modality appears benign on its own but conveys hazard when combined. Multimodal implicit toxicity appears not only as formal statements in social platforms but also prompts that can lead to toxic dialogs from Large Vision-Language Models (LVLMs). Despite the success in unimodal text or image moderation, toxicity detection for multimodal content, particularly the multimodal implicit toxicity, remains underexplored. To fill this gap, we comprehensively build a taxonomy for multimodal implicit toxicity (MMIT) and introduce an MMIT-dataset, comprising 2,100 multimodal statements and prompts across 7 risk categories (31 sub-categories) and 5 typical cross-modal correlation modes. To advance the detection of multimodal implicit toxicity, we build ShieldVLM, a model which identifies implicit toxicity in multimodal statements, prompts and dialogs via deliberative cross-modal reasoning. Experiments show that ShieldVLM outperforms existing strong baselines in detecting both implicit and explicit toxicity. The model and dataset will be publicly available to support future researches. Warning: This paper contains potentially sensitive contents.
Abstract:The rise of Internet connectivity has accelerated the spread of disinformation, threatening societal trust, decision-making, and national security. Disinformation has evolved from simple text to complex multimodal forms combining images and text, challenging existing detection methods. Traditional deep learning models struggle to capture the complexity of multimodal disinformation. Inspired by advances in AI, this study explores using Large Language Models (LLMs) for automated disinformation detection. The empirical study shows that (1) LLMs alone cannot reliably assess the truthfulness of claims; (2) providing relevant evidence significantly improves their performance; (3) however, LLMs cannot autonomously search for accurate evidence. To address this, we propose Holmes, an end-to-end framework featuring a novel evidence retrieval method that assists LLMs in collecting high-quality evidence. Our approach uses (1) LLM-powered summarization to extract key information from open sources and (2) a new algorithm and metrics to evaluate evidence quality. Holmes enables LLMs to verify claims and generate justifications effectively. Experiments show Holmes achieves 88.3% accuracy on two open-source datasets and 90.2% in real-time verification tasks. Notably, our improved evidence retrieval boosts fact-checking accuracy by 30.8% over existing methods
Abstract:We present MaskMark, a simple, efficient and flexible framework for image watermarking. MaskMark has two variants: MaskMark-D, which supports global watermark embedding, watermark localization, and local watermark extraction for applications such as tamper detection, and MaskMark-ED, which focuses on local watermark embedding and extraction with enhanced robustness in small regions, enabling localized image protection. Built upon the classical Encoder- Distortion-Decoder training paradigm, MaskMark-D introduces a simple masking mechanism during the decoding stage to support both global and local watermark extraction. A mask is applied to the watermarked image before extraction, allowing the decoder to focus on selected regions and learn local extraction. A localization module is also integrated into the decoder to identify watermark regions during inference, reducing interference from irrelevant content and improving accuracy. MaskMark-ED extends this design by incorporating the mask into the encoding stage as well, guiding the encoder to embed the watermark in designated local regions for enhanced robustness. Comprehensive experiments show that MaskMark achieves state-of-the-art performance in global watermark extraction, local watermark extraction, watermark localization, and multi-watermark embedding. It outperforms all existing baselines, including the recent leading model WAM for local watermarking, while preserving high visual quality of the watermarked images. MaskMark is also flexible, by adjusting the distortion layer, it can adapt to different robustness requirements with just a few steps of fine-tuning. Moreover, our approach is efficient and easy to optimize, requiring only 20 hours on a single A6000 GPU with just 1/15 the computational cost of WAM.
Abstract:Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
Abstract:Large language models (LLMs) have emerged as powerful tools for addressing a wide range of general inquiries and tasks. Despite this, fine-tuning aligned LLMs on smaller, domain-specific datasets, critical to adapting them to specialized tasks, can inadvertently degrade their safety alignment, even when the datasets are benign. This phenomenon makes models more susceptible to providing inappropriate responses. In this study, we systematically examine the factors contributing to safety alignment degradation in benign fine-tuning scenarios. Our analysis identifies three critical factors affecting aligned LLMs: answer structure, identity calibration, and role-play. Additionally, we evaluate the reliability of state-of-the-art reward models (RMs), which are often used to guide alignment processes. Our findings reveal that these RMs frequently fail to accurately reflect human preferences regarding safety, underscoring their limitations in practical applications. By uncovering these challenges, our work highlights the complexities of maintaining safety alignment during fine-tuning and offers guidance to help developers balance utility and safety in LLMs. Datasets and fine-tuning code used in our experiments can be found in https://github.com/GuanlinLee/llm_instruction_tuning.
Abstract:Artificial Intelligence Generated Content (AIGC) has advanced significantly, particularly with the development of video generation models such as text-to-video (T2V) models and image-to-video (I2V) models. However, like other AIGC types, video generation requires robust content control. A common approach is to embed watermarks, but most research has focused on images, with limited attention given to videos. Traditional methods, which embed watermarks frame-by-frame in a post-processing manner, often degrade video quality. In this paper, we propose VideoShield, a novel watermarking framework specifically designed for popular diffusion-based video generation models. Unlike post-processing methods, VideoShield embeds watermarks directly during video generation, eliminating the need for additional training. To ensure video integrity, we introduce a tamper localization feature that can detect changes both temporally (across frames) and spatially (within individual frames). Our method maps watermark bits to template bits, which are then used to generate watermarked noise during the denoising process. Using DDIM Inversion, we can reverse the video to its original watermarked noise, enabling straightforward watermark extraction. Additionally, template bits allow precise detection for potential temporal and spatial modification. Extensive experiments across various video models (both T2V and I2V models) demonstrate that our method effectively extracts watermarks and detects tamper without compromising video quality. Furthermore, we show that this approach is applicable to image generation models, enabling tamper detection in generated images as well. Codes and models are available at \href{https://github.com/hurunyi/VideoShield}{https://github.com/hurunyi/VideoShield}.
Abstract:Auto-regressive large language models (LLMs) have yielded impressive performance in many real-world tasks. However, the new paradigm of these LLMs also exposes novel threats. In this paper, we explore their vulnerability to inference cost attacks, where a malicious user crafts Engorgio prompts to intentionally increase the computation cost and latency of the inference process. We design Engorgio, a novel methodology, to efficiently generate adversarial Engorgio prompts to affect the target LLM's service availability. Engorgio has the following two technical contributions. (1) We employ a parameterized distribution to track LLMs' prediction trajectory. (2) Targeting the auto-regressive nature of LLMs' inference process, we propose novel loss functions to stably suppress the appearance of the <EOS> token, whose occurrence will interrupt the LLM's generation process. We conduct extensive experiments on 13 open-sourced LLMs with parameters ranging from 125M to 30B. The results show that Engorgio prompts can successfully induce LLMs to generate abnormally long outputs (i.e., roughly 2-13$\times$ longer to reach 90%+ of the output length limit) in a white-box scenario and our real-world experiment demonstrates Engergio's threat to LLM service with limited computing resources. The code is accessible at https://github.com/jianshuod/Engorgio-prompt.
Abstract:Intrinsic self-correction was proposed to improve LLMs' responses via feedback prompts solely based on their inherent capability. However, recent works show that LLMs' intrinsic self-correction fails without oracle labels as feedback prompts. In this paper, we aim to interpret LLMs' intrinsic self-correction for different tasks, especially for those failure cases. By including one simple task and three complex tasks with state-of-the-art (SOTA) LLMs like ChatGPT families (o1, 4o, 3.5-turbo) and Llama families (2-7B, 3-8B, and 3.1-8B), we design three interpretation methods to reveal the dark side of LLMs' intrinsic self-correction. We identify intrinsic self-correction can (1) cause LLMs to waver both intermedia and final answers and lead to prompt bias on simple factual questions; (2) introduce human-like cognitive bias on complex tasks. In light of our findings, we also provide two simple yet effective strategies for alleviation: question repeating and supervised fine-tuning with a few samples. We open-source our work at https://x-isc.info/.