Abstract:Video-to-Audio (V2A) Generation achieves significant progress and plays a crucial role in film and video post-production. However, current methods overlook the cinematic language, a critical component of artistic expression in filmmaking. As a result, their performance deteriorates in scenarios where Foley targets are only partially visible. To address this challenge, we propose a simple self-distillation approach to extend V2A models to cinematic language scenarios. By simulating the cinematic language variations, the student model learns to align the video features of training pairs with the same audio-visual correspondences, enabling it to effectively capture the associations between sounds and partial visual information. Our method not only achieves impressive improvements under partial visibility across all evaluation metrics, but also enhances performance on the large-scale V2A dataset, VGGSound.
Abstract:Recent works favored dense signals (e.g., depth, DensePose), as an alternative to sparse signals (e.g., OpenPose), to provide detailed spatial guidance for pose-guided text-to-image generation. However, dense representations raised new challenges, including editing difficulties and potential inconsistencies with textual prompts. This fact motivates us to revisit sparse signals for pose guidance, owing to their simplicity and shape-agnostic nature, which remains underexplored. This paper proposes a novel Spatial-Pose ControlNet(SP-Ctrl), equipping sparse signals with robust controllability for pose-guided image generation. Specifically, we extend OpenPose to a learnable spatial representation, making keypoint embeddings discriminative and expressive. Additionally, we introduce keypoint concept learning, which encourages keypoint tokens to attend to the spatial positions of each keypoint, thus improving pose alignment. Experiments on animal- and human-centric image generation tasks demonstrate that our method outperforms recent spatially controllable T2I generation approaches under sparse-pose guidance and even matches the performance of dense signal-based methods. Moreover, SP-Ctrl shows promising capabilities in diverse and cross-species generation through sparse signals. Codes will be available at https://github.com/DREAMXFAR/SP-Ctrl.
Abstract:Multimodal contrastive learning models like CLIP have demonstrated remarkable vision-language alignment capabilities, yet their vulnerability to backdoor attacks poses critical security risks. Attackers can implant latent triggers that persist through downstream tasks, enabling malicious control of model behavior upon trigger presentation. Despite great success in recent defense mechanisms, they remain impractical due to strong assumptions about attacker knowledge or excessive clean data requirements. In this paper, we introduce InverTune, the first backdoor defense framework for multimodal models under minimal attacker assumptions, requiring neither prior knowledge of attack targets nor access to the poisoned dataset. Unlike existing defense methods that rely on the same dataset used in the poisoning stage, InverTune effectively identifies and removes backdoor artifacts through three key components, achieving robust protection against backdoor attacks. Specifically, InverTune first exposes attack signatures through adversarial simulation, probabilistically identifying the target label by analyzing model response patterns. Building on this, we develop a gradient inversion technique to reconstruct latent triggers through activation pattern analysis. Finally, a clustering-guided fine-tuning strategy is employed to erase the backdoor function with only a small amount of arbitrary clean data, while preserving the original model capabilities. Experimental results show that InverTune reduces the average attack success rate (ASR) by 97.87% against the state-of-the-art (SOTA) attacks while limiting clean accuracy (CA) degradation to just 3.07%. This work establishes a new paradigm for securing multimodal systems, advancing security in foundation model deployment without compromising performance.
Abstract:Medical dialogue systems (MDS) have emerged as crucial online platforms for enabling multi-turn, context-aware conversations with patients. However, existing MDS often struggle to (1) identify relevant medical knowledge and (2) generate personalized, medically accurate responses. To address these challenges, we propose MedRef, a novel MDS that incorporates knowledge refining and dynamic prompt adjustment. First, we employ a knowledge refining mechanism to filter out irrelevant medical data, improving predictions of critical medical entities in responses. Additionally, we design a comprehensive prompt structure that incorporates historical details and evident details. To enable real-time adaptability to diverse patient conditions, we implement two key modules, Triplet Filter and Demo Selector, providing appropriate knowledge and demonstrations equipped in the system prompt. Extensive experiments on MedDG and KaMed benchmarks show that MedRef outperforms state-of-the-art baselines in both generation quality and medical entity accuracy, underscoring its effectiveness and reliability for real-world healthcare applications.
Abstract:Existing multimodal methods typically assume that different modalities share the same category set. However, in real-world applications, the category distributions in multimodal data exhibit inconsistencies, which can hinder the model's ability to effectively utilize cross-modal information for recognizing all categories. In this work, we propose the practical setting termed Multi-Modal Heterogeneous Category-set Learning (MMHCL), where models are trained in heterogeneous category sets of multi-modal data and aim to recognize complete classes set of all modalities during test. To effectively address this task, we propose a Class Similarity-based Cross-modal Fusion model (CSCF). Specifically, CSCF aligns modality-specific features to a shared semantic space to enable knowledge transfer between seen and unseen classes. It then selects the most discriminative modality for decision fusion through uncertainty estimation. Finally, it integrates cross-modal information based on class similarity, where the auxiliary modality refines the prediction of the dominant one. Experimental results show that our method significantly outperforms existing state-of-the-art (SOTA) approaches on multiple benchmark datasets, effectively addressing the MMHCL task.
Abstract:Reward models are critical for improving large language models (LLMs), particularly in reinforcement learning from human feedback (RLHF) or inference-time verification. Current reward modeling typically relies on scores of overall responses to learn the outcome rewards for the responses. However, since the response-level scores are coarse-grained supervision signals, the reward model struggles to identify the specific components within a response trajectory that truly correlate with the scores, leading to poor generalization on unseen responses. In this paper, we propose to leverage generation probabilities to establish reward consistency between processes in the response trajectory, which allows the response-level supervisory signal to propagate across processes, thereby providing additional fine-grained signals for reward learning. Building on analysis under the Bayesian framework, we develop an intra-trajectory consistency regularization to enforce that adjacent processes with higher next-token generation probability maintain more consistent rewards. We apply the proposed regularization to the advanced outcome reward model, improving its performance on RewardBench. Besides, we show that the reward model trained with the proposed regularization induces better DPO-aligned policies and achieves better best-of-N (BON) inference-time verification results. Our code is provided in https://github.com/chaoyang101/ICRM.
Abstract:Federated Multi-Task Learning (FMTL) enables multiple clients performing heterogeneous tasks without exchanging their local data, offering broad potential for privacy preserving multi-task collaboration. However, most existing methods focus on building personalized models for each client and unable to support the aggregation of multiple heterogeneous tasks into a unified model. As a result, in real-world scenarios where task objectives, label spaces, and optimization paths vary significantly, conventional FMTL methods struggle to achieve effective joint training. To address this challenge, we propose FedDEA (Federated Decoupled Aggregation), an update-structure-aware aggregation method specifically designed for multi-task model integration. Our method dynamically identifies task-relevant dimensions based on the response strength of local updates and enhances their optimization effectiveness through rescaling. This mechanism effectively suppresses cross-task interference and enables task-level decoupled aggregation within a unified global model. FedDEA does not rely on task labels or architectural modifications, making it broadly applicable and deployment-friendly. Experimental results demonstrate that it can be easily integrated into various mainstream federated optimization algorithms and consistently delivers significant overall performance improvements on widely used NYUD-V2 and PASCAL-Context. These results validate the robustness and generalization capabilities of FedDEA under highly heterogeneous task settings.
Abstract:Video text spotting (VTS) extends image text spotting (ITS) by adding text tracking, significantly increasing task complexity. Despite progress in VTS, existing methods still fall short of the performance seen in ITS. This paper identifies a key limitation in current video text spotters: limited recognition capability, even after extensive end-to-end training. To address this, we propose GoMatching++, a parameter- and data-efficient method that transforms an off-the-shelf image text spotter into a video specialist. The core idea lies in freezing the image text spotter and introducing a lightweight, trainable tracker, which can be optimized efficiently with minimal training data. Our approach includes two key components: (1) a rescoring mechanism to bridge the domain gap between image and video data, and (2) the LST-Matcher, which enhances the frozen image text spotter's ability to handle video text. We explore various architectures for LST-Matcher to ensure efficiency in both parameters and training data. As a result, GoMatching++ sets new performance records on challenging benchmarks such as ICDAR15-video, DSText, and BOVText, while significantly reducing training costs. To address the lack of curved text datasets in VTS, we introduce ArTVideo, a new benchmark featuring over 30% curved text with detailed annotations. We also provide a comprehensive statistical analysis and experimental results for ArTVideo. We believe that GoMatching++ and the ArTVideo benchmark will drive future advancements in video text spotting. The source code, models and dataset are publicly available at https://github.com/Hxyz-123/GoMatching.
Abstract:Power transmission corridor hazard segmentation (PTCHS) aims to separate transmission equipment and surrounding hazards from complex background, conveying great significance to maintaining electric power transmission safety. Recently, the Segment Anything Model (SAM) has emerged as a foundational vision model and pushed the boundaries of segmentation tasks. However, SAM struggles to deal with the target objects in complex transmission corridor scenario, especially those with fine structure. In this paper, we propose ELE-SAM, adapting SAM for the PTCHS task. Technically, we develop a Context-Aware Prompt Adapter to achieve better prompt tokens via incorporating global-local features and focusing more on key regions. Subsequently, to tackle the hazard objects with fine structure in complex background, we design a High-Fidelity Mask Decoder by leveraging multi-granularity mask features and then scaling them to a higher resolution. Moreover, to train ELE-SAM and advance this field, we construct the ELE-40K benchmark, the first large-scale and real-world dataset for PTCHS including 44,094 image-mask pairs. Experimental results for ELE-40K demonstrate the superior performance that ELE-SAM outperforms the baseline model with the average 16.8% mIoU and 20.6% mBIoU performance improvement. Moreover, compared with the state-of-the-art method on HQSeg-44K, the average 2.9% mIoU and 3.8% mBIoU absolute improvements further validate the effectiveness of our method on high-quality generic object segmentation. The source code and dataset are available at https://github.com/Hhaizee/ELE-SAM.
Abstract:Domain-specific instruction-tuning has become the defacto standard for improving the performance of large language models (LLMs) in specialized applications, e.g., medical question answering. Since the instruction-tuning dataset might contain redundant or low-quality data, data selection (DS) is usually required to maximize the data efficiency. Despite the successes in the general domain, current DS methods often struggle to select the desired data for domain-specific instruction-tuning. One of the main reasons is that they neglect the impact of knowledge conflicts, i.e., the discrepancy between LLMs' pretrained knowledge and context knowledge of instruction data, which could damage LLMs' prior abilities and lead to hallucination. To this end, we propose a simple-yet-effective Knowledge-aware Data Selection (namely KDS) framework to select the domain-specific instruction-tuning data that meets LLMs' actual needs. The core of KDS is to leverage two knowledge-aware metrics for quantitatively measuring knowledge conflicts from two aspects: context-memory knowledge alignment and intra-memory knowledge consistency. By filtering the data with large knowledge conflicts and sampling the high-quality and diverse data, KDS can effectively stimulate the LLMs' abilities and achieve better domain-specific performance. Taking the medical domain as the testbed, we conduct extensive experiments and empirically prove that KDS surpasses the other baselines and brings significant and consistent performance gains among all LLMs. More encouragingly, KDS effectively improves the model generalization and alleviates the hallucination problem.