Abstract:The state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safe and reliable operation of electric vehicles. Nevertheless, the prevailing SOH estimation methods often have limited generalizability. This paper introduces a data-driven approach for estimating the SOH of LIBs, which is designed to improve generalization. We construct a hybrid model named ACLA, which integrates the attention mechanism, convolutional neural network (CNN), and long short-term memory network (LSTM) into the augmented neural ordinary differential equation (ANODE) framework. This model employs normalized charging time corresponding to specific voltages in the constant current charging phase as input and outputs the SOH as well as remaining useful of life. The model is trained on NASA and Oxford datasets and validated on the TJU and HUST datasets. Compared to the benchmark models NODE and ANODE, ACLA exhibits higher accuracy with root mean square errors (RMSE) for SOH estimation as low as 1.01% and 2.24% on the TJU and HUST datasets, respectively.
Abstract:Box-supervised polyp segmentation attracts increasing attention for its cost-effective potential. Existing solutions often rely on learning-free methods or pretrained models to laboriously generate pseudo masks, triggering Dice constraint subsequently. In this paper, we found that a model guided by the simplest box-filled masks can accurately predict polyp locations/sizes, but suffers from shape collapsing. In response, we propose two innovative learning fashions, Improved Box-dice (IBox) and Contrastive Latent-Anchors (CLA), and combine them to train a robust box-supervised model IBoxCLA. The core idea behind IBoxCLA is to decouple the learning of location/size and shape, allowing for focused constraints on each of them. Specifically, IBox transforms the segmentation map into a proxy map using shape decoupling and confusion-region swapping sequentially. Within the proxy map, shapes are disentangled, while locations/sizes are encoded as box-like responses. By constraining the proxy map instead of the raw prediction, the box-filled mask can well supervise IBoxCLA without misleading its shape learning. Furthermore, CLA contributes to shape learning by generating two types of latent anchors, which are learned and updated using momentum and segmented polyps to steadily represent polyp and background features. The latent anchors facilitate IBoxCLA to capture discriminative features within and outside boxes in a contrastive manner, yielding clearer boundaries. We benchmark IBoxCLA on five public polyp datasets. The experimental results demonstrate the competitive performance of IBoxCLA compared to recent fully-supervised polyp segmentation methods, and its superiority over other box-supervised state-of-the-arts with a relative increase of overall mDice and mIoU by at least 6.5% and 7.5%, respectively.