Alert button
Picture for Nan Wang

Nan Wang

Alert button

Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly Detection

Nov 17, 2023
Fan Xu, Nan Wang, Xuezhi Wen, Meiqi Gao, Chaoqun Guo, Xibin Zhao

Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority. It has gained substantial attention in various domains of information security, including network intrusion, financial fraud, and malicious comments, et al. Existing methods are primarily developed in an unsupervised manner due to the challenge in obtaining labeled data. For lack of guidance from prior knowledge in unsupervised manner, the identified anomalies may prove to be data noise or individual data instances. In real-world scenarios, a limited batch of labeled anomalies can be captured, making it crucial to investigate the few-shot problem in graph anomaly detection. Taking advantage of this potential, we propose a novel few-shot Graph Anomaly Detection model called FMGAD (Few-shot Message-Enhanced Contrastive-based Graph Anomaly Detector). FMGAD leverages a self-supervised contrastive learning strategy within and across views to capture intrinsic and transferable structural representations. Furthermore, we propose the Deep-GNN message-enhanced reconstruction module, which extensively exploits the few-shot label information and enables long-range propagation to disseminate supervision signals to deeper unlabeled nodes. This module in turn assists in the training of self-supervised contrastive learning. Comprehensive experimental results on six real-world datasets demonstrate that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.

Viaarxiv icon

Multi-Objective Intrinsic Reward Learning for Conversational Recommender Systems

Oct 31, 2023
Zhendong Chu, Nan Wang, Hongning Wang

Conversational Recommender Systems (CRS) actively elicit user preferences to generate adaptive recommendations. Mainstream reinforcement learning-based CRS solutions heavily rely on handcrafted reward functions, which may not be aligned with user intent in CRS tasks. Therefore, the design of task-specific rewards is critical to facilitate CRS policy learning, which remains largely under-explored in the literature. In this work, we propose a novel approach to address this challenge by learning intrinsic rewards from interactions with users. Specifically, we formulate intrinsic reward learning as a multi-objective bi-level optimization problem. The inner level optimizes the CRS policy augmented by the learned intrinsic rewards, while the outer level drives the intrinsic rewards to optimize two CRS-specific objectives: maximizing the success rate and minimizing the number of turns to reach a successful recommendation in conversations. To evaluate the effectiveness of our approach, we conduct extensive experiments on three public CRS benchmarks. The results show that our algorithm significantly improves CRS performance by exploiting informative learned intrinsic rewards.

* 11 pages 
Viaarxiv icon

Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents

Oct 30, 2023
Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Mohammad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba Sturua, Bo Wang, Maximilian Werk, Nan Wang, Han Xiao

Text embedding models have emerged as powerful tools for transforming sentences into fixed-sized feature vectors that encapsulate semantic information. While these models are essential for tasks like information retrieval, semantic clustering, and text re-ranking, most existing open-source models, especially those built on architectures like BERT, struggle to represent lengthy documents and often resort to truncation. One common approach to mitigate this challenge involves splitting documents into smaller paragraphs for embedding. However, this strategy results in a much larger set of vectors, consequently leading to increased memory consumption and computationally intensive vector searches with elevated latency. To address these challenges, we introduce Jina Embeddings 2, an open-source text embedding model capable of accommodating up to 8192 tokens. This model is designed to transcend the conventional 512-token limit and adeptly process long documents. Jina Embeddings 2 not only achieves state-of-the-art performance on a range of embedding-related tasks in the MTEB benchmark but also matches the performance of OpenAI's proprietary ada-002 model. Additionally, our experiments indicate that an extended context can enhance performance in tasks such as NarrativeQA.

* 14 pages 
Viaarxiv icon

RD-VIO: Robust Visual-Inertial Odometry for Mobile Augmented Reality in Dynamic Environments

Oct 23, 2023
Jinyu Li, Xiaokun Pan, Gan Huang, Ziyang Zhang, Nan Wang, Hujun Bao, Guofeng Zhang

It is typically challenging for visual or visual-inertial odometry systems to handle the problems of dynamic scenes and pure rotation. In this work, we design a novel visual-inertial odometry (VIO) system called RD-VIO to handle both of these two problems. Firstly, we propose an IMU-PARSAC algorithm which can robustly detect and match keypoints in a two-stage process. In the first state, landmarks are matched with new keypoints using visual and IMU measurements. We collect statistical information from the matching and then guide the intra-keypoint matching in the second stage. Secondly, to handle the problem of pure rotation, we detect the motion type and adapt the deferred-triangulation technique during the data-association process. We make the pure-rotational frames into the special subframes. When solving the visual-inertial bundle adjustment, they provide additional constraints to the pure-rotational motion. We evaluate the proposed VIO system on public datasets. Experiments show the proposed RD-VIO has obvious advantages over other methods in dynamic environments.

Viaarxiv icon

Depth Completion with Multiple Balanced Bases and Confidence for Dense Monocular SLAM

Sep 20, 2023
Weijian Xie, Guanyi Chu, Quanhao Qian, Yihao Yu, Hai Li, Danpeng Chen, Shangjin Zhai, Nan Wang, Hujun Bao, Guofeng Zhang

Figure 1 for Depth Completion with Multiple Balanced Bases and Confidence for Dense Monocular SLAM
Figure 2 for Depth Completion with Multiple Balanced Bases and Confidence for Dense Monocular SLAM
Figure 3 for Depth Completion with Multiple Balanced Bases and Confidence for Dense Monocular SLAM
Figure 4 for Depth Completion with Multiple Balanced Bases and Confidence for Dense Monocular SLAM

Dense SLAM based on monocular cameras does indeed have immense application value in the field of AR/VR, especially when it is performed on a mobile device. In this paper, we propose a novel method that integrates a light-weight depth completion network into a sparse SLAM system using a multi-basis depth representation, so that dense mapping can be performed online even on a mobile phone. Specifically, we present a specifically optimized multi-basis depth completion network, called BBC-Net, tailored to the characteristics of traditional sparse SLAM systems. BBC-Net can predict multiple balanced bases and a confidence map from a monocular image with sparse points generated by off-the-shelf keypoint-based SLAM systems. The final depth is a linear combination of predicted depth bases that can be optimized by tuning the corresponding weights. To seamlessly incorporate the weights into traditional SLAM optimization and ensure efficiency and robustness, we design a set of depth weight factors, which makes our network a versatile plug-in module, facilitating easy integration into various existing sparse SLAM systems and significantly enhancing global depth consistency through bundle adjustment. To verify the portability of our method, we integrate BBC-Net into two representative SLAM systems. The experimental results on various datasets show that the proposed method achieves better performance in monocular dense mapping than the state-of-the-art methods. We provide an online demo running on a mobile phone, which verifies the efficiency and mapping quality of the proposed method in real-world scenarios.

Viaarxiv icon

Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models

Jun 06, 2023
Fobo Shi, Peijun Qing, Dong Yang, Nan Wang, Youbo Lei, Haonan Lu, Xiaodong Lin

Figure 1 for Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models
Figure 2 for Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models
Figure 3 for Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models
Figure 4 for Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models

Prompt engineering is an essential technique for enhancing the abilities of large language models (LLMs) by providing explicit and specific instructions. It enables LLMs to excel in various tasks, such as arithmetic reasoning, question answering, summarization, relation extraction, machine translation, and sentiment analysis. Researchers have been actively exploring different prompt engineering strategies, such as Chain of Thought (CoT), Zero-CoT, and In-context learning. However, an unresolved problem arises from the fact that current approaches lack a solid theoretical foundation for determining optimal prompts. To address this issue in prompt engineering, we propose a new and effective approach called Prompt Space. Our methodology utilizes text embeddings to obtain basis vectors by matrix decomposition, and then constructs a space for representing all prompts. Prompt Space significantly outperforms state-of-the-art prompt paradigms on ten public reasoning benchmarks. Notably, without the help of the CoT method and the prompt "Let's think step by step", Prompt Space shows superior performance over the few-shot method. Overall, our approach provides a robust and fundamental theoretical framework for selecting simple and effective prompts. This advancement marks a significant step towards improving prompt engineering for a wide variety of applications in LLMs.

* Natural language processing (NLP) 
Viaarxiv icon

Exploring Global and Local Information for Anomaly Detection with Normal Samples

Jun 03, 2023
Fan Xu, Nan Wang, Xibin Zhao

Figure 1 for Exploring Global and Local Information for Anomaly Detection with Normal Samples
Figure 2 for Exploring Global and Local Information for Anomaly Detection with Normal Samples
Figure 3 for Exploring Global and Local Information for Anomaly Detection with Normal Samples
Figure 4 for Exploring Global and Local Information for Anomaly Detection with Normal Samples

Anomaly detection aims to detect data that do not conform to regular patterns, and such data is also called outliers. The anomalies to be detected are often tiny in proportion, containing crucial information, and are suitable for application scenes like intrusion detection, fraud detection, fault diagnosis, e-commerce platforms, et al. However, in many realistic scenarios, only the samples following normal behavior are observed, while we can hardly obtain any anomaly information. To address such problem, we propose an anomaly detection method GALDetector which is combined of global and local information based on observed normal samples. The proposed method can be divided into a three-stage method. Firstly, the global similar normal scores and the local sparsity scores of unlabeled samples are computed separately. Secondly, potential anomaly samples are separated from the unlabeled samples corresponding to these two scores and corresponding weights are assigned to the selected samples. Finally, a weighted anomaly detector is trained by loads of samples, then the detector is utilized to identify else anomalies. To evaluate the effectiveness of the proposed method, we conducted experiments on three categories of real-world datasets from diverse domains, and experimental results show that our method achieves better performance when compared with other state-of-the-art methods.

* 6 pages, 1 figures 
Viaarxiv icon

HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion Planning Algorithm for Hybrid Dynamical Systems

May 29, 2023
Nan Wang, Ricardo G. Sanfelice

Figure 1 for HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion Planning Algorithm for Hybrid Dynamical Systems
Figure 2 for HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion Planning Algorithm for Hybrid Dynamical Systems
Figure 3 for HySST: A Stable Sparse Rapidly-Exploring Random Trees Optimal Motion Planning Algorithm for Hybrid Dynamical Systems

This paper proposes a stable sparse rapidly-exploring random trees (SST) algorithm to solve the optimal motion planning problem for hybrid systems. At each iteration, the proposed algorithm, called HySST, selects a vertex with the lowest cost among all the vertices within the neighborhood of a randomly selected sample and then extends the search tree by flow or jump, which is also chosen randomly when both regimes are possible. In addition, HySST maintains a static set of witness points such that all the vertices within the neighborhood of each witness are pruned except the vertex with the lowest cost. Through a definition of concatenation of functions defined on hybrid time domains, we show that HySST is asymptotically near optimal, namely, the probability of failing to find a motion plan such that its cost is close to the optimal cost approaches zero as the number of iterations of the algorithm increases to infinity. This property is guaranteed under mild conditions on the data defining the motion plan, which include a relaxation of the usual positive clearance assumption imposed in the literature of classical systems. The proposed algorithm is applied to an actuated bouncing ball system and a collision-resilient tensegrity multicopter system so as to highlight its generality and computational features.

* This paper has been submitted to the 2023 Conference of Decision and Control (CDC). arXiv admin note: substantial text overlap with arXiv:2210.15082 
Viaarxiv icon

BrainNPT: Pre-training of Transformer networks for brain network classification

May 04, 2023
Jinlong Hu, Yangmin Huang, Nan Wang, Shoubin Dong

Figure 1 for BrainNPT: Pre-training of Transformer networks for brain network classification
Figure 2 for BrainNPT: Pre-training of Transformer networks for brain network classification
Figure 3 for BrainNPT: Pre-training of Transformer networks for brain network classification
Figure 4 for BrainNPT: Pre-training of Transformer networks for brain network classification

Deep learning methods have advanced quickly in brain imaging analysis over the past few years, but they are usually restricted by the limited labeled data. Pre-trained model on unlabeled data has presented promising improvement in feature learning in many domains, including natural language processing and computer vision. However, this technique is under-explored in brain network analysis. In this paper, we focused on pre-training methods with Transformer networks to leverage existing unlabeled data for brain functional network classification. First, we proposed a Transformer-based neural network, named as BrainNPT, for brain functional network classification. The proposed method leveraged <cls> token as a classification embedding vector for the Transformer model to effectively capture the representation of brain network. Second, We proposed a pre-training architecture with two pre-training strategies for BrainNPT model to leverage unlabeled brain network data to learn the structure information of brain networks. The results of classification experiments demonstrated the BrainNPT model without pre-training achieved the best performance with the state-of-the-art models, and the BrainNPT model with pre-training strongly outperformed the state-of-the-art models. The pre-training BrainNPT model improved 8.75% of accuracy compared with the model without pre-training. We further compared the pre-training strategies, analyzed the influence of the parameters of the model, and interpreted the fine-tuned model.

* Prepared to Submit to TMI 
Viaarxiv icon