Abstract:Large language models (LLMs) have shown impressive capabilities across a wide range of applications, but their ever-increasing size and resource demands make them vulnerable to inference cost attacks, where attackers induce victim LLMs to generate the longest possible output content. In this paper, we revisit existing inference cost attacks and reveal that these methods can hardly produce large-scale malicious effects since they are self-targeting, where attackers are also the users and therefore have to execute attacks solely through the inputs, whose generated content will be charged by LLMs and can only directly influence themselves. Motivated by these findings, this paper introduces a new type of inference cost attacks (dubbed 'bit-flip inference cost attack') that target the victim model itself rather than its inputs. Specifically, we design a simple yet effective method (dubbed 'BitHydra') to effectively flip critical bits of model parameters. This process is guided by a loss function designed to suppress <EOS> token's probability with an efficient critical bit search algorithm, thus explicitly defining the attack objective and enabling effective optimization. We evaluate our method on 11 LLMs ranging from 1.5B to 14B parameters under both int8 and float16 settings. Experimental results demonstrate that with just 4 search samples and as few as 3 bit flips, BitHydra can force 100% of test prompts to reach the maximum generation length (e.g., 2048 tokens) on representative LLMs such as LLaMA3, highlighting its efficiency, scalability, and strong transferability across unseen inputs.
Abstract:DNN accelerators have been widely deployed in many scenarios to speed up the inference process and reduce the energy consumption. One big concern about the usage of the accelerators is the confidentiality of the deployed models: model inference execution on the accelerators could leak side-channel information, which enables an adversary to preciously recover the model details. Such model extraction attacks can not only compromise the intellectual property of DNN models, but also facilitate some adversarial attacks. Although previous works have demonstrated a number of side-channel techniques to extract models from DNN accelerators, they are not practical for two reasons. (1) They only target simplified accelerator implementations, which have limited practicality in the real world. (2) They require heavy human analysis and domain knowledge. To overcome these limitations, this paper presents Mercury, the first automated remote side-channel attack against the off-the-shelf Nvidia DNN accelerator. The key insight of Mercury is to model the side-channel extraction process as a sequence-to-sequence problem. The adversary can leverage a time-to-digital converter (TDC) to remotely collect the power trace of the target model's inference. Then he uses a learning model to automatically recover the architecture details of the victim model from the power trace without any prior knowledge. The adversary can further use the attention mechanism to localize the leakage points that contribute most to the attack. Evaluation results indicate that Mercury can keep the error rate of model extraction below 1%.