Beijing Key Laboratory of Digital Media, School of Computer Science and Engineering, Beihang University, Beijing, China
Abstract:Recent works have explored reference-based super-resolution (RefSR) to mitigate hallucinations in diffusion-based image restoration. A key challenge is that real-world degradations make correspondences between low-quality (LQ) inputs and reference (Ref) images unreliable, requiring adaptive control of reference usage. Existing methods either ignore LQ-Ref correlations or rely on brittle explicit matching, leading to over-reliance on misleading references or under-utilization of valuable cues. To address this, we propose Ada-RefSR, a single-step diffusion framework guided by a "Trust but Verify" principle: reference information is leveraged when reliable and suppressed otherwise. Its core component, Adaptive Implicit Correlation Gating (AICG), employs learnable summary tokens to distill dominant reference patterns and capture implicit correlations with LQ features. Integrated into the attention backbone, AICG provides lightweight, adaptive regulation of reference guidance, serving as a built-in safeguard against erroneous fusion. Experiments on multiple datasets demonstrate that Ada-RefSR achieves a strong balance of fidelity, naturalness, and efficiency, while remaining robust under varying reference alignment.
Abstract:Training large language models using 4-bit arithmetic enhances throughput and memory efficiency. Yet, the limited dynamic range of FP4 increases sensitivity to outliers. While NVFP4 mitigates quantization error via hierarchical microscaling, a persistent loss gap remains compared to BF16. This study conducts a longitudinal analysis of outlier dynamics across architecture during NVFP4 pretraining, focusing on where they localize, why they occur, and how they evolve temporally. We find that, compared with Softmax Attention (SA), Linear Attention (LA) reduces per-tensor heavy tails but still exhibits persistent block-level spikes under block quantization. Our analysis attributes outliers to specific architectural components: Softmax in SA, gating in LA, and SwiGLU in FFN, with "post-QK" operations exhibiting higher sensitivity to quantization. Notably, outliers evolve from transient spikes early in training to a small set of persistent hot channels (i.e., channels with persistently large magnitudes) in later stages. Based on these findings, we introduce Hot-Channel Patch (HCP), an online compensation mechanism that identifies hot channels and reinjects residuals using hardware-efficient kernels. We then develop CHON, an NVFP4 training recipe integrating HCP with post-QK operation protection. On GLA-1.3B model trained for 60B tokens, CHON reduces the loss gap to BF16 from 0.94% to 0.58% while maintaining downstream accuracy.
Abstract:Unified multimodal large language models (MLLMs) integrate image understanding and generation in a single framework, with the visual tokenizer acting as the sole interface that maps visual inputs into tokens for downstream tasks. However, existing shared-token designs are mostly architecture-driven and lack an explicit criterion for what information tokens should preserve to support both understanding and generation. Therefore, we introduce a capacity-constrained perspective, highlighting that in shared-token unified MLLMs the visual tokenizer behaves as a compute-bounded learner, so the token budget should prioritize reusable structure over hard-to-exploit high-entropy variations and redundancy. Motivated by this perspective, we propose InfoTok, an information-regularized visual tokenization mechanism grounded in the Information Bottleneck (IB) principle. InfoTok formulates tokenization as controlling information flow from images to shared tokens to multimodal outputs, yielding a principled trade-off between compression and task relevance via mutual-information regularization. We integrate InfoTok into three representative unified MLLMs without introducing any additional training data. Experiments show consistent improvements on both understanding and generation, supporting information-regularized tokenization as a principled foundation for learning a shared token space in unified MLLMs.
Abstract:Training Large Language Models (LLMs) at ultra-low precision is critically impeded by instability rooted in the conflict between discrete quantization constraints and the intrinsic heavy-tailed spectral nature of linguistic data. By formalizing the connection between Zipfian statistics and random matrix theory, we prove that the power-law decay in the singular value spectra of embeddings is a fundamental requisite for semantic encoding. We derive theoretical bounds showing that uniform quantization introduces a noise floor that disproportionately truncates this spectral tail, which induces spectral flattening and a strictly provable increase in the stable rank of representations. Empirical validation across diverse architectures including GPT-2 and TinyLlama corroborates that this geometric degradation precipitates representational collapse. This work not only quantifies the spectral sensitivity of LLMs but also establishes spectral fidelity as a necessary condition for stable low-bit optimization.
Abstract:Information-seeking agents have emerged as a powerful paradigm for solving knowledge-intensive tasks. Existing information-seeking agents are typically specialized for open web, documents, or local knowledge bases, which constrains scalability and cross-domain generalization. In this work, we investigate how to consolidate heterogeneous information-seeking agents into a single foundation agentic model. We study two complementary consolidation strategies: data-level consolidation, which jointly trains a unified model on a mixture of domain-specific datasets, and parameter-level consolidation, which merges independently trained agent models at the parameter level. Our analysis compares these approaches in terms of performance retention, cross-domain generalization, and interference across information-seeking behaviors. Our results show that data-level consolidation remains a strong and stable baseline, while parameter-level consolidation offers a promising, efficient alternative but suffers from interference and robustness challenges. We further identify key design factors for effective agent consolidation at the parameter level, including fine-grained merging granularity, awareness of task heterogeneity, and principled consensus strategy.
Abstract:Autonomous code agents built on large language models are reshaping software and AI development through tool use, long-horizon reasoning, and self-directed interaction. However, this autonomy introduces a previously unrecognized security risk: agentic interaction fundamentally expands the LLM attack surface, enabling systematic probing and recovery of hidden system prompts that guide model behavior. We identify system prompt extraction as an emergent vulnerability intrinsic to code agents and present \textbf{\textsc{JustAsk}}, a self-evolving framework that autonomously discovers effective extraction strategies through interaction alone. Unlike prior prompt-engineering or dataset-based attacks, \textsc{JustAsk} requires no handcrafted prompts, labeled supervision, or privileged access beyond standard user interaction. It formulates extraction as an online exploration problem, using Upper Confidence Bound-based strategy selection and a hierarchical skill space spanning atomic probes and high-level orchestration. These skills exploit imperfect system-instruction generalization and inherent tensions between helpfulness and safety. Evaluated on \textbf{41} black-box commercial models across multiple providers, \textsc{JustAsk} consistently achieves full or near-complete system prompt recovery, revealing recurring design- and architecture-level vulnerabilities. Our results expose system prompts as a critical yet largely unprotected attack surface in modern agent systems.
Abstract:We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.
Abstract:In the current era of mobile internet, Lightweight Low-Light Image Enhancement (L3IE) is critical for mobile devices, which faces a persistent trade-off between visual quality and model compactness. While recent methods employ disentangling strategies to simplify lightweight architectural design, such as Retinex theory and YUV color space transformations, their performance is fundamentally limited by overlooking channel-specific degradation patterns and cross-channel interactions. To address this gap, we perform a frequency-domain analysis that confirms the superiority of the YUV color space for L3IE. We identify a key insight: the Y channel primarily loses low-frequency content, while the UV channels are corrupted by high-frequency noise. Leveraging this finding, we propose a novel YUV-based paradigm that strategically restores channels using a Dual-Stream Global-Local Attention module for the Y channel, a Y-guided Local-Aware Frequency Attention module for the UV channels, and a Guided Interaction module for final feature fusion. Extensive experiments validate that our model establishes a new state-of-the-art on multiple benchmarks, delivering superior visual quality with a significantly lower parameter count.
Abstract:Diffusion-based language models (DLLMs) offer non-sequential, block-wise generation and richer data reuse compared to autoregressive (AR) models, but existing code DLLMs still lag behind strong AR baselines under comparable budgets. We revisit this setting in a controlled study and introduce Stable-DiffCoder, a block diffusion code model that reuses the Seed-Coder architecture, data, and training pipeline. To enable efficient knowledge learning and stable training, we incorporate a block diffusion continual pretraining (CPT) stage enhanced by a tailored warmup and block-wise clipped noise schedule. Under the same data and architecture, Stable-DiffCoder overall outperforms its AR counterpart on a broad suite of code benchmarks. Moreover, relying only on the CPT and supervised fine-tuning stages, Stable-DiffCoder achieves stronger performance than a wide range of \~8B ARs and DLLMs, demonstrating that diffusion-based training can improve code modeling quality beyond AR training alone. Moreover, diffusion-based any-order modeling improves structured code modeling for editing and reasoning, and through data augmentation, benefits low-resource coding languages.
Abstract:This paper presents FeTal-SAM, a novel adaptation of the Segment Anything Model (SAM) tailored for fetal brain MRI segmentation. Traditional deep learning methods often require large annotated datasets for a fixed set of labels, making them inflexible when clinical or research needs change. By integrating atlas-based prompts and foundation-model principles, FeTal-SAM addresses two key limitations in fetal brain MRI segmentation: (1) the need to retrain models for varying label definitions, and (2) the lack of insight into whether segmentations are driven by genuine image contrast or by learned spatial priors. We leverage multi-atlas registration to generate spatially aligned label templates that serve as dense prompts, alongside a bounding-box prompt, for SAM's segmentation decoder. This strategy enables binary segmentation on a per-structure basis, which is subsequently fused to reconstruct the full 3D segmentation volumes. Evaluations on two datasets, the dHCP dataset and an in-house dataset demonstrate FeTal-SAM's robust performance across gestational ages. Notably, it achieves Dice scores comparable to state-of-the-art baselines which were trained for each dataset and label definition for well-contrasted structures like cortical plate and cerebellum, while maintaining the flexibility to segment any user-specified anatomy. Although slightly lower accuracy is observed for subtle, low-contrast structures (e.g., hippocampus, amygdala), our results highlight FeTal-SAM's potential to serve as a general-purpose segmentation model without exhaustive retraining. This method thus constitutes a promising step toward clinically adaptable fetal brain MRI analysis tools.