Victor
Abstract:In recommender systems, online A/B testing is a crucial method for evaluating the performance of different models. However, conducting online A/B testing often presents significant challenges, including substantial economic costs, user experience degradation, and considerable time requirements. With the Large Language Models' powerful capacity, LLM-based agent shows great potential to replace traditional online A/B testing. Nonetheless, current agents fail to simulate the perception process and interaction patterns, due to the lack of real environments and visual perception capability. To address these challenges, we introduce a multi-modal user agent for A/B testing (A/B Agent). Specifically, we construct a recommendation sandbox environment for A/B testing, enabling multimodal and multi-page interactions that align with real user behavior on online platforms. The designed agent leverages multimodal information perception, fine-grained user preferences, and integrates profiles, action memory retrieval, and a fatigue system to simulate complex human decision-making. We validated the potential of the agent as an alternative to traditional A/B testing from three perspectives: model, data, and features. Furthermore, we found that the data generated by A/B Agent can effectively enhance the capabilities of recommendation models. Our code is publicly available at https://github.com/Applied-Machine-Learning-Lab/ABAgent.
Abstract:The Transformer architecture, a cornerstone of modern Large Language Models (LLMs), has achieved extraordinary success in sequence modeling, primarily due to its attention mechanism. However, despite its power, the standard attention mechanism is plagued by well-documented issues: representational collapse and attention sink. Although prior work has proposed approaches for these issues, they are often studied in isolation, obscuring their deeper connection. In this paper, we present a unified perspective, arguing that both can be traced to a common root -- improper attention allocation. We identify two failure modes: 1) Attention Overload, where tokens receive comparable high weights, blurring semantic features that lead to representational collapse; 2) Attention Underload, where no token is semantically relevant, yet attention is still forced to distribute, resulting in spurious focus such as attention sink. Building on this insight, we introduce Lazy Attention, a novel mechanism designed for a more focused attention distribution. To mitigate overload, it employs positional discrimination across both heads and dimensions to sharpen token distinctions. To counteract underload, it incorporates Elastic-Softmax, a modified normalization function that relaxes the standard softmax constraint to suppress attention on irrelevant tokens. Experiments on the FineWeb-Edu corpus, evaluated across nine diverse benchmarks, demonstrate that Lazy Attention successfully mitigates attention sink and achieves competitive performance compared to both standard attention and modern architectures, while reaching up to 59.58% attention sparsity.
Abstract:The increasing integration of large language models (LLMs) into mental health applications necessitates robust frameworks for evaluating professional safety alignment. Current evaluative approaches primarily rely on refusal-based safety signals, which offer limited insight into the nuanced behaviors required in clinical practice. In mental health, clinically inadequate refusals can be perceived as unempathetic and discourage help-seeking. To address this gap, we move beyond refusal-centric metrics and introduce \texttt{PsychEthicsBench}, the first principle-grounded benchmark based on Australian psychology and psychiatry guidelines, designed to evaluate LLMs' ethical knowledge and behavioral responses through multiple-choice and open-ended tasks with fine-grained ethicality annotations. Empirical results across 14 models reveal that refusal rates are poor indicators of ethical behavior, revealing a significant divergence between safety triggers and clinical appropriateness. Notably, we find that domain-specific fine-tuning can degrade ethical robustness, as several specialized models underperform their base backbones in ethical alignment. PsychEthicsBench provides a foundation for systematic, jurisdiction-aware evaluation of LLMs in mental health, encouraging more responsible development in this domain.
Abstract:Recent large reasoning models (LRMs) have made substantial progress in complex reasoning tasks, yet they often generate lengthy reasoning paths for every query, incurring unnecessary computation and latency. Existing speed-up approaches typically rely on retraining the model or designing sophisticated prompting, which are either prohibitively expensive or highly sensitive to the input and prompt formulation. In this work, we study model merging as a lightweight alternative for efficient reasoning: by combining a long chain-of-thought (Long-CoT) reasoning model with a Short-CoT instruction model, we obtain an adaptive reasoner without training from scratch or requiring large-scale additional data. Building on this idea, we propose Reasoning Pattern Alignment Merging (RPAM), a layer-wise model merging framework based on feature alignment to facilitate query-adaptive reasoning. RPAM first constructs a small pattern-labeled calibration set that assigns each query an appropriate reasoning pattern. It then optimizes layer-wise merging coefficients by aligning the merged model's intermediate representations with those of the selected model, while a contrastive objective explicitly pushes them away from the non-selected model. Experiments on seven widely used reasoning benchmarks show that RPAM substantially reduces inference cost while maintaining strong performance. Upon article acceptance, we will provide open-source code to reproduce experiments for RPAM.
Abstract:The advancement of LLM agents with tool-use capabilities requires diverse and complex training corpora. Existing data generation methods, which predominantly follow a paradigm of random sampling and shallow generation, often yield simple and homogeneous trajectories that fail to capture complex, implicit logical dependencies. To bridge this gap, we introduce HardGen, an automatic agentic pipeline designed to generate hard tool-use training samples with verifiable reasoning. Firstly, HardGen establishes a dynamic API Graph built upon agent failure cases, from which it samples to synthesize hard traces. Secondly, these traces serve as conditional priors to guide the instantiation of modular, abstract advanced tools, which are subsequently leveraged to formulate hard queries. Finally, the advanced tools and hard queries enable the generation of verifiable complex Chain-of-Thought (CoT), with a closed-loop evaluation feedback steering the continuous refinement of the process. Extensive evaluations demonstrate that a 4B parameter model trained with our curated dataset achieves superior performance compared to several leading open-source and closed-source competitors (e.g., GPT-5.2, Gemini-3-Pro and Claude-Opus-4.5). Our code, models, and dataset will be open-sourced to facilitate future research.
Abstract:Tensor network structure search (TN-SS) aims to automatically discover optimal network topologies and rank configurations for efficient tensor decomposition in high-dimensional data representation. Despite recent advances, existing TN-SS methods face significant limitations in computational tractability, structure adaptivity, and optimization robustness across diverse tensor characteristics. They struggle with three key challenges: single-scale optimization missing multi-scale structures, discrete search spaces hindering smooth structure evolution, and separated structure-parameter optimization causing computational inefficiency. We propose RGTN (Renormalization Group guided Tensor Network search), a physics-inspired framework transforming TN-SS via multi-scale renormalization group flows. Unlike fixed-scale discrete search methods, RGTN uses dynamic scale-transformation for continuous structure evolution across resolutions. Its core innovation includes learnable edge gates for optimization-stage topology modification and intelligent proposals based on physical quantities like node tension measuring local stress and edge information flow quantifying connectivity importance. Starting from low-complexity coarse scales and refining to finer ones, RGTN finds compact structures while escaping local minima via scale-induced perturbations. Extensive experiments on light field data, high-order synthetic tensors, and video completion tasks show RGTN achieves state-of-the-art compression ratios and runs 4-600$\times$ faster than existing methods, validating the effectiveness of our physics-inspired approach.
Abstract:We introduce SciEvalKit, a unified benchmarking toolkit designed to evaluate AI models for science across a broad range of scientific disciplines and task capabilities. Unlike general-purpose evaluation platforms, SciEvalKit focuses on the core competencies of scientific intelligence, including Scientific Multimodal Perception, Scientific Multimodal Reasoning, Scientific Multimodal Understanding, Scientific Symbolic Reasoning, Scientific Code Generation, Science Hypothesis Generation and Scientific Knowledge Understanding. It supports six major scientific domains, spanning from physics and chemistry to astronomy and materials science. SciEvalKit builds a foundation of expert-grade scientific benchmarks, curated from real-world, domain-specific datasets, ensuring that tasks reflect authentic scientific challenges. The toolkit features a flexible, extensible evaluation pipeline that enables batch evaluation across models and datasets, supports custom model and dataset integration, and provides transparent, reproducible, and comparable results. By bridging capability-based evaluation and disciplinary diversity, SciEvalKit offers a standardized yet customizable infrastructure to benchmark the next generation of scientific foundation models and intelligent agents. The toolkit is open-sourced and actively maintained to foster community-driven development and progress in AI4Science.
Abstract:Audiobook interpretations are attracting increasing attention, as they provide accessible and in-depth analyses of books that offer readers practical insights and intellectual inspiration. However, their manual creation process remains time-consuming and resource-intensive. To address this challenge, we propose AI4Reading, a multi-agent collaboration system leveraging large language models (LLMs) and speech synthesis technology to generate podcast, like audiobook interpretations. The system is designed to meet three key objectives: accurate content preservation, enhanced comprehensibility, and a logical narrative structure. To achieve these goals, we develop a framework composed of 11 specialized agents,including topic analysts, case analysts, editors, a narrator, and proofreaders that work in concert to explore themes, extract real world cases, refine content organization, and synthesize natural spoken language. By comparing expert interpretations with our system's output, the results show that although AI4Reading still has a gap in speech generation quality, the generated interpretative scripts are simpler and more accurate.
Abstract:Despite advances in scientific AI, a coherent framework for Scientific General Intelligence (SGI)-the ability to autonomously conceive, investigate, and reason across scientific domains-remains lacking. We present an operational SGI definition grounded in the Practical Inquiry Model (PIM: Deliberation, Conception, Action, Perception) and operationalize it via four scientist-aligned tasks: deep research, idea generation, dry/wet experiments, and experimental reasoning. SGI-Bench comprises over 1,000 expert-curated, cross-disciplinary samples inspired by Science's 125 Big Questions, enabling systematic evaluation of state-of-the-art LLMs. Results reveal gaps: low exact match (10--20%) in deep research despite step-level alignment; ideas lacking feasibility and detail; high code executability but low execution result accuracy in dry experiments; low sequence fidelity in wet protocols; and persistent multimodal comparative-reasoning challenges. We further introduce Test-Time Reinforcement Learning (TTRL), which optimizes retrieval-augmented novelty rewards at inference, enhancing hypothesis novelty without reference answer. Together, our PIM-grounded definition, workflow-centric benchmark, and empirical insights establish a foundation for AI systems that genuinely participate in scientific discovery.




Abstract:Multi-scenario multi-task recommendation (MSMTR) systems must address recommendation demands across diverse scenarios while simultaneously optimizing multiple objectives, such as click-through rate and conversion rate. Existing MSMTR models typically consist of four information units: scenario-shared, scenario-specific, task-shared, and task-specific networks. These units interact to generate four types of relationship information flows, directed from scenario-shared or scenario-specific networks to task-shared or task-specific networks. However, these models face two main limitations: 1) They often rely on complex architectures, such as mixture-of-experts (MoE) networks, which increase the complexity of information fusion, model size, and training cost. 2) They extract all available information flows without filtering out irrelevant or even harmful content, introducing potential noise. Regarding these challenges, we propose a lightweight Automated Information Flow Selection (AutoIFS) framework for MSMTR. To tackle the first issue, AutoIFS incorporates low-rank adaptation (LoRA) to decouple the four information units, enabling more flexible and efficient information fusion with minimal parameter overhead. To address the second issue, AutoIFS introduces an information flow selection network that automatically filters out invalid scenario-task information flows based on model performance feedback. It employs a simple yet effective pruning function to eliminate useless information flows, thereby enhancing the impact of key relationships and improving model performance. Finally, we evaluate AutoIFS and confirm its effectiveness through extensive experiments on two public benchmark datasets and an online A/B test.